Please wait a minute...
材料导报  2019, Vol. 33 Issue (18): 3031-3034    https://doi.org/10.11896/cldb.18080044
  无机非金属及其复合材料 |
磷石膏矿化固定CO2制备高纯高白CaCO3
赵红涛1, 2, 王树民1, 刘志江1, 张曼3,
1 国家能源投资集团有限责任公司,北京 100011
2 清华大学环境学院,北京 100084
3 华北科技学院环境工程学院,廊坊 065201
Preparation of High-purity and High-white CaCO3 by Phosphogypsum Mineralization for CO2 Capture
ZHAO Hongtao1,2, WANG Shumin1, LIU Zhijiang1, ZHANG Man3
1 National Energy Investment Group Co., Ltd., Beijing 100011
2 School of Environment, Tsinghua University, Beijing 100084
3 School of Environmental Engineering, North China Institute of Science and Technology, Langfang 065201
下载:  全 文 ( PDF ) ( 2326KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提升固废磷石膏矿化固定CO2反应转化率、反应速率以及产品碳酸钙的纯度和白度,本研究首先利用磷石膏高效除杂技术获得净化石膏,再在加压条件下矿化固定CO2。采用XRF、XRD、SEM及白度分析仪等对净化石膏和产品碳酸钙以及碳酸化反应的转化率、反应速率进行比较分析。结果表明,通过高效除杂,磷石膏中几乎所有杂质都有效脱除。由于大幅消除了杂质对磷石膏解离以及碳酸化反应的不利影响,在净化石膏矿化固定CO2时,碳酸化反应的转化率从97.5%增加到99.5%,反应速率小幅增加,所得碳酸钙产品的纯度从86.5%增加到99.1%,白度从47.8%大幅增加到91.7%,且碳酸钙的晶型由方解石型转化为文石型。同时,本研究所得碳酸钙产品的纯度和白度显著增加,使其相应的附加值更高、用途更广,从而显著提升磷石膏矿化捕集CO2技术的经济性,为CO2的捕集并联产高品质碳酸盐产品,以及磷石膏的高效资源化提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵红涛
王树民
刘志江
张曼
关键词:  磷石膏  CO2  碳酸化  纯度  白度    
Abstract: In order to increase the conversion ratio, reaction rate of phosphogypsum (PG) mineral carbonation for CO2 capture and the purity and whiteness of CaCO3 product, firstly, the purified gypsum was prepared through PG efficient impurity removal technology and then to fix CO2 under pressurized condition. The characterization of purified gypsum, CaCO3 product, the carbonation conversion ratio and the reaction rate were comparatively analyzed by XRF, XRD, SEM and whiteness analyzer. The results showed that almost all impurities in PG were effectively removed through this efficient purification technology. Due to the substantial elimination of the effects of adverse impurities on the dissociation of phosphogypsum and carbonation reaction, not only the conversion ratio increased from 97.5% to 99.5% and the reaction rate also increased slightly, but also the purity of CaCO3 product increased from 86.5% to 99.1%, the whiteness increased sharply from 47.8% to 91.7%, and CaCO3 crystalline form translated from calcite into aragonite. The significant increase of purity and whiteness of CaCO3 product, correspon-dingly higher added value and wider application, will greatly enhance the economy and industrial application of PG mineral carbonation for CO2 capture, eventually providing a new idea for carbon dioxide capture and co-production of high-quality carbonate products and efficient recycling of phosphogypsum.
Key words:  phosphogypsum    CO2    carbonation    purity    whiteness
               出版日期:  2019-09-25      发布日期:  2019-07-31
ZTFLH:  TQ110.9  
基金资助: 国家重点研发计划项目(2017YFB0603300); 中央高校基本科研业务费资助项目(3142018011)
通讯作者:  hous01@163.com   
作者简介:  赵红涛,工程师,博士,从事温室气体CO2减排与工业固废资源化研究。
张曼,讲师,博士,从事CO2捕集技术及危化品安全管理研究。
引用本文:    
赵红涛, 王树民, 刘志江, 张曼. 磷石膏矿化固定CO2制备高纯高白CaCO3[J]. 材料导报, 2019, 33(18): 3031-3034.
ZHAO Hongtao, WANG Shumin, LIU Zhijiang, ZHANG Man. Preparation of High-purity and High-white CaCO3 by Phosphogypsum Mineralization for CO2 Capture. Materials Reports, 2019, 33(18): 3031-3034.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18080044  或          http://www.mater-rep.com/CN/Y2019/V33/I18/3031
[1] Zhou P, Sun Z R, Zhou D Q. Energy Economics, 2014, 45, 99.
[2] Tietenberg T H, Lewis L. Environmental and natural resource economics, Routledge,London, 2016.
[3] Wang P, Wu W, Zhu B, et al.Applied Energy, 2013, 106, 65.
[4] Liang J, Chu W Y, Huang Y B, et al. Materials Review B:Research Papers, 2017, 31(12), 1(in Chinese).梁娇, 楚婉怡, 黄永波, 等. 材料导报:研究篇, 2017, 31(12), 1.
[5] Bao W, Zhao H, Li H, et al. Journal of CO2 Utilization, 2017, 17, 125.
[6] Lee M G, Jang Y N, Won R K, et al. Energy, 2012, 47(1), 370.
[7] Romanov V, Soong Y, Carney C, et al. ChemBioEng Reviews, 2015, 2(4), 231.
[8] Green R A, Hartwig J F. Organic Letters, 2014, 16(17), 4388.
[9] Zhang H X, Tan X T, Wang Y C, et al. Phosphate & Compound Fertili-zer, 2017(10), 5(in Chinese).张红星, 谭晓婷, 王奕晨, 等. 磷肥与复肥, 2017(10), 5.
[10] Zhao H T, Bao W J, Sun Z H, et al. Chemical Industry and Engineering Progress, 2017, 36(4),1240(in Chinese).赵红涛, 包炜军, 孙振华, 等. 化工进展, 2017, 36(4),1240.
[11] Zhao H T, Li H Q, Bao W J, et al. Journal of CO2 Utilization, 2015, 11, 10.
[12] Romero-Hermida I, Santos A, Pérez-López R, et al. Journal of CO2 Utilization, 2017, 18, 15.
[13] Cárdenas-Escudero C, Morales-Flórez V, Pérez-López R, et al. Journal of Hazardous Materials, 2011, 196, 431.
[14] Lu H F, Zhong B H,Liang B, et al. Journal of Chemical Engineering of Chinese Universities, 2002, 16 (1), 98(in Chinese).鲁厚芳, 钟本和, 梁斌, 等. 高校化学工程学报, 2002, 16 (1), 98.
[15] Wang W, Zeng D, Chen Q, et al. Chemical Engineering Science, 2013, 101, 120.
[16] Song K, Jang Y N, Kim W, et al. Chemical Engineering Journal, 2012, 213, 251.
[17] Sun H, Tan D, Peng T, et al. Procedia Environmental Sciences, 2016, 31, 621.
[1] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[2] 王倩, 谢海波. DBU/DMSO/CO2溶剂体系中纤维素聚离子液体的合成及性质[J]. 材料导报, 2019, 33(10): 1768-1772.
[3] 杨贵荣,宋文明,董雪娇,张玉福,王富强,李 健,马 颖. CO2分压对20#钢在CO2/H2O气液两相塞状流中腐蚀行为的影响[J]. 《材料导报》期刊社, 2018, 32(9): 1557-1563.
[4] 王明, 李星. 超临界二氧化碳技术制备的聚丙烯/三元乙丙橡胶开孔发泡材料的吸油行为[J]. 《材料导报》期刊社, 2018, 32(8): 1236-1240.
[5] 应建行, 刘智峰, 贺登峰, 陈忠仁. LLDPE/EPDM共混物的超临界CO2微孔发泡研究[J]. 《材料导报》期刊社, 2018, 32(4): 616-620.
[6] 刘泽伟, 闫思佳, 夏子皓, 田霖, 刘煜康, 王竟成, 胡建杭. 温度和CO2对热解成型生物质炭孔隙结构和表面分形维数的影响[J]. 材料导报, 2018, 32(17): 2925-2931.
[7] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[8] 史才军, 王吉云, 涂贞军, 王德辉. CO2养护混凝土技术研究进展[J]. CLDB, 2017, 31(5): 134-138.
[9] 梁 娇,楚婉怡,黄永波,李凤玲,刘 娜,钱觉时. 预分解磷石膏制备贝利特-硫铝酸盐水泥[J]. 《材料导报》期刊社, 2017, 31(24): 1-5.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[7] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed