Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 616-620    https://doi.org/10.11896/j.issn.1005-023X.2018.04.022
  材料研究 |
LLDPE/EPDM共混物的超临界CO2微孔发泡研究
应建行1, 刘智峰1, 贺登峰1, 陈忠仁2
1 宁波大学材料科学与化学工程学院,宁波 315211;
2 南方科技大学化学系,深圳 518055
Study on Microcellular Foaming of Linear Low-density Polyethylene/Ethylene-Propylene-Diene Monomer Blends Using Supercritical Carbon Dioxide
YING Jianxing1, LIU Zhifeng1, HE Dengfeng1, CHEN Zhongren2
1 Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211;
2 Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055
下载:  全 文 ( PDF ) ( 2897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了线性低密度聚乙烯(LLDPE)/三元乙丙橡胶(EPDM)橡塑共混物在超临界CO2中的微孔发泡行为。利用扫描电子显微镜对发泡样品的泡孔形貌进行了分析和表征;采用差示扫描量热仪分析了共混物的热性质;分别利用旋转流变仪和万能试验机分析得到样品的流变性能和力学性能。采用一定量的LLDPE与EPDM共混,压制标准试样,然后在高压反应釜中进行发泡,讨论了LLDPE/EPDM共混物中橡塑的质量比、饱和温度、饱和压力对材料泡孔结构和泡孔均匀性的影响。利用超临界CO2作物理发泡剂,对发泡条件进行优化,可得到泡孔尺寸规整、泡孔密度高且回弹性和韧性较好的发泡闭孔材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
应建行
刘智峰
贺登峰
陈忠仁
关键词:  三元乙丙橡胶  线性低密度聚乙烯  超临界CO2  微孔发泡    
Abstract: Microcellular foaming of LLDPE/EPDM blend was studied by using supercritical carbon dioxide. Scanning electron microscope was employed to analyze and characterize the morphology of the foaming sample. Thermal properties of the blend was analyzed by differential scanning calorimeter. Rheology behavior and mechanical properties of the sample were studied by rotational rheometer and universal tester microtester respectively. The LLDPE/EPDM blend and compressed standard sample were first obtained, then they were foamed at the high pressure reaction kettle. The impact of foaming parameters including rubber and plastic mass ratio, saturation temperature and saturation pressure on the foaming material's cell structure and cell uniformity were discussed. Using supercritical carbon dioxide as physical foaming agent and optimizing the foaming condition could obtain the closed-cell foaming material which possessed uniform morphology and large bubble density. Meanwhile, the material also presented good toughness and rebound resilience.
Key words:  ethylene-propylene-diene monomer    linear low density polyethylene    supercritical CO2    microcellular foaming
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TQ320.0  
  TQ320.1  
基金资助: 化学工程联合国家重点实验室开放课题(SKL-ChE-12D01); 国家自然科学基金(21274070); 宁波市“3315”计划(A类)(2012S0001); 浙江省重点科技创新团队计划(2011R5001); 宁波市科技局/农业与社会发展攻关项目(2011A31002); 南方科技大学科研启动经费(Y01216121)
通讯作者:  陈忠仁:,1964年生,博士,教授,主要研究方向为聚合物分子设计与可控聚合、高分子聚集态结构调控与表征、有机纳米材料多尺度加工、高分子复合材料界面设计与调控、高分子疲劳失效机理与寿命预测等 E-mail:chenzr@sustc.edu.cn   
作者简介:  应建行:男,1992年生,硕士研究生,研究方向为超临界发泡、高分子物理 E-mail:1240996931@qq.com
引用本文:    
应建行, 刘智峰, 贺登峰, 陈忠仁. LLDPE/EPDM共混物的超临界CO2微孔发泡研究[J]. 《材料导报》期刊社, 2018, 32(4): 616-620.
YING Jianxing, LIU Zhifeng, HE Dengfeng, CHEN Zhongren. Study on Microcellular Foaming of Linear Low-density Polyethylene/Ethylene-Propylene-Diene Monomer Blends Using Supercritical Carbon Dioxide. Materials Reports, 2018, 32(4): 616-620.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.022  或          http://www.mater-rep.com/CN/Y2018/V32/I4/616
1 Wang X G. Application of PE closed-cell foam board and polystyrene foam insulation board in canal seepage control engineering[J].Energy Research & Management,2012,30(2):70(in Chinese).
王兴国.PE闭孔泡沫塑料板、聚苯乙烯泡沫保温板在渠道防漏工程中的应用[J].能源研究与管理,2012,30(2):70.
2 Jiang L H. The application of new material in seepage control engineering[J].Science and Technology Information,2012,8(23):63(in Chinese).
江连河.新型材料在防渗工程中的应用[J].科技资讯,2012,8(23):63.
3 Lu F D, Zhang S Y, Du Q X. Study of vibration performance of EPE[J].Packaging Engineering,2011,31(11):1(in Chinese).
卢富德,张邵云,杜启详.发泡聚乙烯隔振性能研究[J].包装工程,2011,31(11):1.
4 Len’kov S V, Molin S M, Kopytov A G. Resonance measurement technique for viscoelastic properties of damping materials of the po-rous closed cellular PE foam type[J].Russian Journal of Nondestructive Testing,2014,50(3):180.
5 Seo J H, et al. Effects of repeated microcellular foaming process on cell morphology and foaming ratio of microcellular plastics[J].Polymer-Plastics Technology and Engineering,2011,50(6):588.
6 Mills N J, et al. Finite element micromechanics model of impact compression of closed-cell polymer foams[J].International Journal of Solids and Structures,2009,46(3-4):677.
7 Danaei M, Sheikh N, Faroni F A. Radiation cross-linked polyethylene foam preparation and properties[J].Journal of Cellular Plastics,2005,41(6):551.
8 Kwon Y K, Bae H K. Production of microcellular foam plastics by supercritical carbon dioxide[J].Korean Journal of Chemical Engineering,2007,24(1):127.
9 Sumarno, et al. Production of polystyrene microcellular foam plastics and a comparison of late-and quick-heating[J].Journal of Applied Polymer Science,2015,77(11):2383.
10 Rodríguez-Pérez M A, et al. Thermal conductivity of physically crosslinked closed cell polyolefin foams[J].Polymer Testing,1997,16(3):287.
11 Cao X M, Hang Z S, Ying S J. Research progresses in control of the cell morphology of microcellular polymeric foams[J].Materials Review A:Review Papers,2012,26(6):69(in Chinese).
曹晓苗,杭祖圣,应三九.微孔发泡聚合物泡孔形貌控制的研究进展[J].材料导报:综述篇,2012,26(6):69.
12 Colton J S,Suh N P. The nucleation of microcellular thermoplastic foam with additives: Part Ⅰ: Theoretical considerations[J].Polymer Engineering & Science,1987,27(7):485.
13 Raj W R P, Sasthav M, Cheung H M. Microcellular polymeric materials from microemulsions: Control of microstructure and morphology[J].Journal of Applied Polymer Science,1993,47(3):499.
14 Dixon D J, Johnston K P ,Bodmeier R A.Polymeric materials formed by precipitation with a compressed fluid antisolvent[J].Aiche Journal,1993,39(39):127.
15 Park C B, Baldwin D F, Suh N P. Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers[J].Polymer Engineering & Science,1995,35(5):432.
16 Goren K, et al. Influence of nanoparticle surface chemistry and size on supercritical carbon dioxide processed nanocomposite foam morphology[J].Journal of Supercritical Fluids,2010,51(3):420.17 Li Y N. Review on the progress of open-cell polymeric foams[J].Materials Review A:Review Papers,2015,29(9):15(in Chinese).
李妍凝.超临界流体技术制备聚合物开孔发泡材料的研究进展[J].材料导报:综述篇,2015,29(9):15.
18 Kitano T, Hashmi S A R, Chand N. Influence of steady shear flow on dynamic viscoelastic properties ofun-reinforced and glass fibre reinforced LLDPE[J].Indian Academy of Sciences,2004,27(5):409.
19 Yamaguchi M, Abe S. LLDPE/LDPE blends. Ⅰ. Rheological, thermal, and mechanical properties[J].Journal of Applied Polymer Science,2015,74(13):3153.
20 Li B, He J. Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE-wood-fibre composites[J].Polymer Degradation & Stability,2004,83(2):241.
21 Li T. The stucture characteristic of polyethlene chemical materials and application development[J].Chemical Industry,2014,32(1):20(in Chinese).
李婷.聚乙烯化工材料的结构特点和应用发展[J].化学工业,2014,32(1):20.
22 Zhou X T, Cao Y M. EPDM/LDPE thermoplastic elastomer foamed by supercritical carbon dioxide[J].China Rubber Industry,2015,62(9):523(in Chinese).
周晓涛,曹有名.超临界二氧化碳发泡三元乙丙橡胶/低密度聚乙烯热塑性弹性体[J].橡胶工业,2015,62(9):523.
23 Manzur A, Olayo R, Ramos E. Effect of EPDM on LDPE/LLDPE blends: Mechanical properties[J].Journal of Applied Polymer Science,2015,65(4):677.
24 Jeong K M, et al. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology[J].Waste Management & Research the Journal of the International Solid Wastes & Public Cleansing Association Iswa,2014,32(11):1113.
25 Lei W H, Zhao Q. Development of peroxide-vulcanized EPDM foam[J].China Rubber Industry,2002,49(5):1000(in Chinese).
雷卫华,赵祺.过氧化物硫化EPDM发泡材料的研制[J].橡胶工业,2002,49(5):1000.
26 Park C P. Process for making lightly crosslinked linear polymer foams:US,43147[P].1992-01-15.
27 Faez R, et al. Microwave properties of EPDM/PAni-DBSA blends[J].Synthetic Metals,2001,119(1):435.
28 Alaga M, et al. Studies on thermal, thermal ageing and morphological characteristics of EPDM-g-VTES/LLDPE[J].European Polymer Journal,2006,42(2):336.
[1] 王明, 李星. 超临界二氧化碳技术制备的聚丙烯/三元乙丙橡胶开孔发泡材料的吸油行为[J]. 《材料导报》期刊社, 2018, 32(8): 1236-1240.
[2] 闫海阔,郑晓平,王璠,包锦标,王市伟. 利用超临界CO2调控聚合物二元共混物的相形貌及力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2057-2061.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed