Please wait a minute...
CLDB  2017, Vol. 31 Issue (5): 134-138    https://doi.org/10.11896/j.issn.1005-023X.2017.05.022
  水泥基材料 |
CO2养护混凝土技术研究进展
史才军, 王吉云, 涂贞军, 王德辉
湖南大学土木工程学院,长沙 410082
Progresses in CO2 Curing of Concrete
SHI Caijun, WANG Jiyun, TU Zhenjun, WANG Dehui
College of Civil Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 1433KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CO2养护混凝土技术是将CO2与新拌混凝土在成型后接触,使CO2与水泥熟料矿物间发生化学反应,进而使得新拌水泥混凝土在很短的时间内凝结硬化的养护技术。它不仅可以获得性能更好的混凝土,还可以合理利用CO2并且节能减排,是一项有前景的可持续发展技术。综述了CO2养护混凝土的反应机理、影响养护过程的关键因素、CO2养护混凝土对微观结构以及耐久性的影响、后续水养护等方面的研究进展,并对CO2养护混凝土技术的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史才军
王吉云
涂贞军
王德辉
关键词:  CO2养护混凝土  预养护  反应机理  微观结构  后续水养护    
Abstract: The CO2-curing concrete technology is a promising sustainable curing method, which based on the chemical reactions between CO2 and fresh concrete. By CO2-curing concrete technology, the fresh concrete could obtain higher early strength and denser microstructure. In another, the CO2-curing concrete technology is an environmentally friendly and energy-efficient method to consume CO2. This paper reviews and summarizes the development and latest research results of CO2 curing of concrete. The kinetics and mechanism of CO2-curing concrete technology, the effect of CO2-curing concrete on microstructure and the subsequent hydration of CO2-curing concrete are introduced. Finally, according to the review of previous studies, some recommendations will be given about the further research in this field.
Key words:  CO2-curing concrete    pre-curing    reaction mechanism    microstructure    subsequent hydration
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TU528  
作者简介:  史才军:男,1963年生,博士,教授,主要从事水泥混凝土方面的研究 E-mail:cshi@hnu.edu.cn
引用本文:    
史才军, 王吉云, 涂贞军, 王德辉. CO2养护混凝土技术研究进展[J]. CLDB, 2017, 31(5): 134-138.
SHI Caijun, WANG Jiyun, TU Zhenjun, WANG Dehui. Progresses in CO2 Curing of Concrete. Materials Reports, 2017, 31(5): 134-138.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.05.022  或          http://www.mater-rep.com/CN/Y2017/V31/I5/134
1 Tarasova O, Koide H, Dlugokencky E. The state of greenhouse gases in the atmosphere using global observations through 2014[C]// EGU General Assembly Conference.2016.
2 Bertos M F, Simons S J R, et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. J Hazard Mater,2004,112(3):193.
3 Shi C, Liu M, He P, et al. Factors affecting kinetics of CO2 curing of concrete[J]. J Sustainable Cement-based Mater,2012,1(1):24.
4 Shi C, Wu Y. Studies on some factors affecting CO2 curing of lightweight concrete products[J]. Resources Conservation Recycling,2008,52(8-9):1087.
5 Shi C, Wu Y. CO2 curing of concrete blocks[J]. Concr Int,2009,31(2):39.
6 Shi C, He F. Properties and microstructure of CO2 cured concrete blocks[C]// Construction Waste Recycling and Civil Engineering Sustainable Development—Proceedings of the 2nd International Conference on Waste Engineering and Management.2010:96.
7 Zhan B, Poon C, Shi C. CO2 curing for improving the properties of concrete blocks containing recycled aggregates[J]. Cem Concr Compos,2013,42(9):1.
8 Shi C, Wang D, et al. Weathering properties of CO2-cured concrete blocks[J]. Resources Conservation Recycling,2012,65(4):11.
9 Kou S C, Zhan B J, Poon C S. Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates[J]. Cem Concr Compos,2014,45(1):22.
10 Zhan B, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Constr Build Mater,2013,67:3.
11 Wauhop B J. Curing of concrete block-a study of energy consumption[R]. Herndon, VA, USA: National Concrete Masonry Association, 1980.
12 Shi C, He F, Wu Y. Effect of pre-conditioning on CO2, curing of lightweight concrete blocks mixtures[J]. Constr Build Mater,2012,26(1):257.
13 Zou Q, Shi C, Zheng K, et al.Effect of pre-conditioning on CO2 curing of block concretes[J].J Build Mater,2008,11(1):116.
邹庆焱, 史才军, 郑克仁,等. 预养护对砌块混凝土二氧化碳养护的影响[J]. 建筑材料学报, 2008,11(1):116.
14 He P, Shi C, Tu Z, et al. Effect of further water curing on compressive strength and microstructure of CO2 -cured concrete[J]. Cem Concr Compos,2016,72:80.
15 Simatupang M H, Habighorst C, Lange H, et al. Investigations on the influence of the addition of carbon dioxide on the production and properties of rapidly set wood-cement composites[J]. Cem Concr Compos,1995,17:187.
16 Soroushian P, Won J P, Chowdhury H, et al. Development of acce-lerated processing techniques for cement-bonded wood particleboard[J]. Cem Concr Compos,2003,25(7):721.
17 Qi H. The acelerated hardening of wod-cement cmposites with carbon doxide injection: Mechanisms and aplications[D].Toronto:Canado Faculty of Forestry University of Toronto,2005.
18 Soroushian P, Won J P, Hassan M. Durability characteristics of CO2-cured cellulose fiber reinforced cement composites[J]. Constr Build Mater,2012,34(3):44.
19 Pizzol V D, Mendes L M, Frezzatti L, et al. Effect of accelerated carbonation on the microstructure and physical properties of hybrid fiber-cement composites[J]. Minerals Eng,2014,59(3):101.
20 Almeida A E F S, Tonoli G H D, et al. Improved durability of vegetable fiber reinforced cement composite subject to accelerated carbo-nation at early age[J]. Cem Concr Compos,2013,42(9):49.
21 Klemm W A, Berger R L. Accelerated curing of cementitious systems by carbon dioxide : Part I. Portland cement[J]. Cem Concr Res,1972,2(5):567.
22 Klemm W A,Berger R L.Accelerated curing of cementitious systems by carbon dioxide: Ⅱ[J].Cem Concr Res,1972,2(6):647.
23 Berger R L, Young J F, Leung K. Acceleration of hydration of cal-cium silicates by carbon dioxide treatment[J].Nature,1972,240:16.
24 Young J F, Berger R L, Breese J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2[J]. J Am Ceram Soc,1974,57(9):394.
25 Shao Y, Mirza M S, Wu X. CO2 sequestration using calcium-silicate concrete[J]. Canadian J Civil Eng,2006,33(6):776.
26 El-Hassan H, Shao Y, et al. Reaction products in carbonation-cured lightweight concrete[J]. J Mater Civil Eng,2013,25:799.
27 Lange L C, Hills C D, Poole A B. The effect of accelerated carbonation on the properties of cement-solidified waste forms[J]. Waste Management,1996,16(8):757.
28 Shtepenko O, Hills C, Brough A, et al. The effect of carbon dioxide on β-dicalcium silicate and Portland cement[J]. Chem Eng J,2006,118(1):107.
29 Seishi G, Kenzo S, Takeshi K, et al. Calcium silicate carbonation products[J]. J Am Ceram Soc,1995,78(11):2867.
30 Goodbrake C J, Young J F, Berger R L. Reaction of beta-dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor [J]. J Am Ceram Soc,1979,62(3-4):168.
31 Shi Caijun,Zou Qingyan,He Fuqiang.Study on CO2 curing kinetics of concrete[J].J Chin Ceram Soc,2010,38(7):1179.
史才军, 邹庆焱, 何富强. 二氧化碳养护混凝土的动力学研究[J]. 硅酸盐学报,2010,38(7):1179.
32 Shao Y,Shi C.Carbonation curing for making concrete products—An old concept and a renewed interest[C]// Proceedings of the 6th International Symposium on Cement and Concrete,2006.
33 Monkman S, Shao Y. Assessing the carbonation behavior of cementitious materials[J]. J Mater Civil Eng,2014,18(6):768.
34 Shao Y, Zhou X, Monkman S. A new CO2 sequestration process via concrete products production[C]// EIC Climate Change Technology, 2006 IEEE. IEEE,2006:1.
35 Bier T A, Kropp J, Hilsdorf H K. Carbonation and realcalinisation of concrete and hydrated cement paste[J]. Durability Const Mater,1987,3:927.
36 Morandeau A, et al. Impact of accelerated carbonation on OPC cement paste blended with fly ash[J]. Cem Concr Res,2015,67:226.
37 Chindaprasirt P, Rukzon S. Pore structure changes of blended cement pastes containing fly ash, rice husk ash, and palm oil fuel ash caused by carbonation[J]. J Mater Civil Eng,2009,21(11):666.
38 Monkman S, Shao Y. Carbonation curing of slag-cement concrete for binding CO2 and improving performance[J]. J Mater Civil Eng,2010,22(4):296.
39 Zhang D, Cai X, Shao Y. Carbonation curing of precast fly ash concrete[J]. J Mater Civil Eng,2016,28(11):04016127.
40 Tu Z, Guo M Z, Chi S P, et al. Effects of limestone powder on CaCO3 precipitation in CO2 cured cement pastes[J]. Cem Concr Compos,2016,72:9.
41 El-Hassan H, Shao Y. Early carbonation curing of concrete masonry units with Portland limestone cement[J]. Cem Concr Compos,2015,62:168.
42 Shi Caijun,He Pingping,Tu Zhenjun,et al.Effect of pre-conditioning on process and microstructure of carbon dioxide cured concrete[J].J Chin Ceram Soc,2014,42(8):996.
史才军, 何平平, 涂贞军,等. 预养护对二氧化碳养护混凝土过程及显微结构的影响[J]. 硅酸盐学报, 2014, 42(8):996.
43 Kashef-Haghighi S, Shao Y, Ghoshal S. Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing[J]. Cem Concr Res,2015,67(67):1.
44 Bukowski J M, Berger R L. Reactivity and strength development of CO2 activated non-hydraulic calcium silicates[J]. Cem Concr Res,1979,9(79):57.
45 Elsener, B. Corrosion of steel in concrete[J]. Uhligs Corrosion Handbook Third Edition,2014, 20(5):105.
46 Shih S M, Ho C, et al. Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature[J]. Ind Eng Chem Res, 1999, 38:1316.
47 Zhang D, Shao Y. Early age carbonation curing for precast reinforced concretes[J]. Constr Build Mater,2016,113:134.
48 Rostami V, Shao Y, et al. Microstructure of cement paste subject to early carbonation curing[J]. Cem Concr Res,2012,42:186.
49 Bentz D P. Mixture poportioning for iternal cring[J]. Concr Int,2005, 27(2):35.
50 lmeida A E F S, Tonoli G H D, Santos S F, et al. Improved dura-bility of vegetable fiber reinforced cement composite subject to accele-rated carbonation at early age[J]. Cem Concr Compos,2013,42:49.
51 Junior A N, et al. The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes[J]. Constr Build Mater,2015,77:448.
52 Rostami V, et al. Durability of concrete pipes subjected to combined steam and carbonation curing[J]. Constr Build Mater,2011,25:3345.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[3] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[4] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[5] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[6] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[7] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[8] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[9] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[10] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[11] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[12] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[13] 袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
[14] 周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
[15] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed