Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1592-1596    https://doi.org/10.11896/j.issn.1005-023X.2018.10.004
  材料研究 |
镀铜CF/ABS树脂复合材料的导电性能
周娩红,陈石林,杨建校,郭建光
湖南大学材料科学与工程学院,长沙 410082
Electrical Conductivity of Copper-coated CF/ABS Composites
ZHOU Mianhong, CHEN Shilin, YANG Jianxiao, GUO Jianguang
College of Material Science and Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 3193KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在中间相沥青基炭纤维表面化学镀铜以提高纤维导电性能,并以热压法制备了短切镀铜炭纤维(Cu-CF)增强ABS树脂导电复合材料。采用SEM、EDS、XRD等表征方法研究了Cu-CF的镀层厚度、Cu-CF界面结构,以及镀铜厚度和Cu-CF的含量对复合材料导电性能的影响。研究表明,化学镀铜是铜晶粒不断长大与晶体结构更加致密的过程。Cu-CF的界面粘结受镀层厚度的影响,随着镀层厚度的增加,镀层与纤维之间出现间隙。Cu-CF的电阻率随镀层厚度的增加急剧降低,当镀层厚度增大至695 nm后电阻率趋于稳定。采用镀层厚度为632 nm的Cu-CF为增强相,当其体积含量为20%时,Cu-CF/ABS复合材料的电阻率为5.87×10-4 Ω·cm,在导电功能材料领域具有很好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周娩红
陈石林
杨建校
郭建光
关键词:  炭纤维  复合材料  化学镀铜  微观结构  导电性    
Abstract: The copper-coated mesophase pitch-based carbon fibers (Cu-CF) were prepared by electroless copper plating for improving the conductivity of CF, and the Cu-CF reinforced ABS resin (Cu-CF/ABS) composites were prepared using hot-pressed method. The surface morphology and microcrystalline structure of Cu-CF were characterized by SEM, EDS and XRD. The relationship between the thickness of copper layers as well as the interface structure of Cu-CF and the conductivity of composites was investigated. The results showed that the electroless copper plating was a grain size growing and crystal structure compacting process for achieving copper layers on the surface of carbon fiber. The resistivity of the Cu-CF decreased rapidly as increasing the thickness of copper layers, and the resistivity of the Cu-CF slowed to a constant level when the thickness of copper layers over 695 nm. Moreover, the Cu-CF/ABS composites presented excellent conductivity of 5.87×10-4 Ω·cm when the resultant Cu-CF (thickness of 632 nm) used as strengthening phases with volume fraction of 20%. Therefore, the Cu-CF/ABS composites showed a great potential application for conductive functional materials.
Key words:  carbon fiber    composites    electroless copper plating    microstructure    electrical conductivity
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51472082)
作者简介:  周娩红:女,1989年生,硕士研究生,研究方向为炭纤维复合材料 E-mail:470284870@qq.com 陈石林:通信作者,男,1967年生,博士,副教授,硕士研究生导师,研究方向为新型炭材料 E-mail:slchen@hnu.edu.cn
引用本文:    
周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
ZHOU Mianhong, CHEN Shilin, YANG Jianxiao, GUO Jianguang. Electrical Conductivity of Copper-coated CF/ABS Composites. Materials Reports, 2018, 32(10): 1592-1596.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.004  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1592
1 Lavin J G, Boyington D R, Lahijani J, et al. The correlation of thermal conductivity with electrical resistivity in mcsophase pitch-based carbon fiber[J]. Carbon,1993,31(6):1001.
2 Jana P B, Mallick A K, De S K. Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range[J]. IEEE Transactions on Electromagnetic Compatibility,1992,34(4):478.
3 Ma Zhaokun, Shi Jingli, Song Yan, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesophase pitch-based fibers[J]. Carbon,2006,44(7):1298.
4 王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004:54.
5 Mochida I, Yoon S H, Korai Y. Mesoscopic structure and properties of liquid crystalline mesophase pitch and its transformation into carbon fiber[J]. Chemical Record,2010,2(2):81.
6 Gallego N C, Edie D D, Nysten B, et al. The thermal conductivity of ribbon-shaped carbon fibers[J]. Carbon,2000,38(7):1003.
7 Miyasaka K, Watannabe K, Jojima E. Electrical conductivity of carbon-polymer composites as a function of carbon content[J]. Mate-rials Science,1982,17(6):1610.
8 Carol Jones. Effects of electrochemical and plasma treatments on carbon fibre surfaces[J]. Surface and Interface Analysis,1993,20(5):357.
9 Tzeng S S, Chang F Y. EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites[J]. Materials Science & Engineering A,2001,302(2):258.
10 Mu B C, Liu B Y, Meng L K, et al. Spinel ceramic matrix composite reinforced by carbon fiber electroless plated[J]. Materials for Mechanical Engineering,2003,27(10):43(in Chinese).
穆柏春,刘秉余,孟力凯,等.化学镀碳纤维增强镁铝尖晶石基复合材料的研究[J].机械工程材料,2003,27(10):43.
11 Kang S S, Ji H, Gul H Z, et al. Metal-coated carbon fiber for ligh-ter electrical metal wires[J]. Synthetic Metals,2016,222:180.
12 Zuo J D, Chen S J, Luo C Y, et al. Praparation of electroless copper coated glass fiber and piezoresistive properties of copper coated glass fiber reinforced plastics[J]. Applied Surface Science,2015,349:319.
13 Lu W, Donepudi V S, Prakash J, et al. Electrochemical and thermal behavior of copper coated type MAG-20 natural graphite[J]. Electrochimica Acta,2002,47(10):1601.
14 Cui X Y, Hutt D A, Conway P P. Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate[J].Thin Solid Films,2012,520(19):6095.
15 Delamarche E, Vichiconti J, Hall S A, et al. Electroless deposition of Cu on glass and patterning with microcontact printing[J]. Langmuir,2003,19(17):6567.
16 Kim I S, Lee S K. Fabrication of carbon nanofiber/Cu composite powder by electroless plating and microstructural evolution during thermal exposure[J]. Scripta Materialia,2005,52(10):1045.
17 Huang C Y, Wu C C. The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites[J]. European Polymer Journal,2000,36(12):2729.
18 Hou W, Pan G P, Guan H, et al. Optimization of process conditions for electroless copper plating on carbon fiber[J]. Electroplating & Finishing,2007,26(9):23(in Chinese).
侯伟,潘功配,关华,等.碳纤维表面化学镀铜工艺的优化[J].电镀与涂饰,2007,26(9):23.
19 Chen H, Liu G, Xu C, et al. Copper@carbon fiber composites prepared by a simple electroless plating technique[J]. Materials Letters,2016,173:211.
20 Yu L G,Xu K W,He J W,et al. Effect of grain size on texture and stress analysis for cubic materials[J]. Acta Metallurgica Sinica,1995,31(17):233(in Chinese).
于利根,徐可为,何家文,等.晶粒度对立方系材料织构及残余应力分析的影响[J].金属学报,1995,31(17):233.
21 Zhang G P, Li M L, Wu X M, et al. Research progress on effect of length scale on electrical resistivity of metals[J]. Materials Research,2014,28(2):81(in Chinese).
张广平,李孟林,吴细毛,等.尺度对金属材料电阻率影响的研究进展[J].材料研究学报,2014,28(2):81.
22 Sherman R D, Middleman L M, Jacobs S M. Electron transport processes in conductor-filled polymers[J]. Polymer Engineering & Science,1983,23(1):36.
23 薛奇,张峻峰,薛辰晨.塑料表面镀铜提高与树脂和金属粘接强度的方法:中国,1068291[P].1993-01-27.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[5] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[6] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[7] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[8] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[9] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[12] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[13] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[14] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed