Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1592-1596    https://doi.org/10.11896/j.issn.1005-023X.2018.10.004
  材料研究 |
镀铜CF/ABS树脂复合材料的导电性能
周娩红,陈石林,杨建校,郭建光
湖南大学材料科学与工程学院,长沙 410082
Electrical Conductivity of Copper-coated CF/ABS Composites
ZHOU Mianhong, CHEN Shilin, YANG Jianxiao, GUO Jianguang
College of Material Science and Engineering, Hunan University, Changsha 410082
下载:  全 文 ( PDF ) ( 3193KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在中间相沥青基炭纤维表面化学镀铜以提高纤维导电性能,并以热压法制备了短切镀铜炭纤维(Cu-CF)增强ABS树脂导电复合材料。采用SEM、EDS、XRD等表征方法研究了Cu-CF的镀层厚度、Cu-CF界面结构,以及镀铜厚度和Cu-CF的含量对复合材料导电性能的影响。研究表明,化学镀铜是铜晶粒不断长大与晶体结构更加致密的过程。Cu-CF的界面粘结受镀层厚度的影响,随着镀层厚度的增加,镀层与纤维之间出现间隙。Cu-CF的电阻率随镀层厚度的增加急剧降低,当镀层厚度增大至695 nm后电阻率趋于稳定。采用镀层厚度为632 nm的Cu-CF为增强相,当其体积含量为20%时,Cu-CF/ABS复合材料的电阻率为5.87×10-4 Ω·cm,在导电功能材料领域具有很好的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周娩红
陈石林
杨建校
郭建光
关键词:  炭纤维  复合材料  化学镀铜  微观结构  导电性    
Abstract: The copper-coated mesophase pitch-based carbon fibers (Cu-CF) were prepared by electroless copper plating for improving the conductivity of CF, and the Cu-CF reinforced ABS resin (Cu-CF/ABS) composites were prepared using hot-pressed method. The surface morphology and microcrystalline structure of Cu-CF were characterized by SEM, EDS and XRD. The relationship between the thickness of copper layers as well as the interface structure of Cu-CF and the conductivity of composites was investigated. The results showed that the electroless copper plating was a grain size growing and crystal structure compacting process for achieving copper layers on the surface of carbon fiber. The resistivity of the Cu-CF decreased rapidly as increasing the thickness of copper layers, and the resistivity of the Cu-CF slowed to a constant level when the thickness of copper layers over 695 nm. Moreover, the Cu-CF/ABS composites presented excellent conductivity of 5.87×10-4 Ω·cm when the resultant Cu-CF (thickness of 632 nm) used as strengthening phases with volume fraction of 20%. Therefore, the Cu-CF/ABS composites showed a great potential application for conductive functional materials.
Key words:  carbon fiber    composites    electroless copper plating    microstructure    electrical conductivity
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51472082)
作者简介:  周娩红:女,1989年生,硕士研究生,研究方向为炭纤维复合材料 E-mail:470284870@qq.com 陈石林:通信作者,男,1967年生,博士,副教授,硕士研究生导师,研究方向为新型炭材料 E-mail:slchen@hnu.edu.cn
引用本文:    
周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
ZHOU Mianhong, CHEN Shilin, YANG Jianxiao, GUO Jianguang. Electrical Conductivity of Copper-coated CF/ABS Composites. Materials Reports, 2018, 32(10): 1592-1596.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.004  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1592
1 Lavin J G, Boyington D R, Lahijani J, et al. The correlation of thermal conductivity with electrical resistivity in mcsophase pitch-based carbon fiber[J]. Carbon,1993,31(6):1001.
2 Jana P B, Mallick A K, De S K. Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range[J]. IEEE Transactions on Electromagnetic Compatibility,1992,34(4):478.
3 Ma Zhaokun, Shi Jingli, Song Yan, et al. Carbon with high thermal conductivity, prepared from ribbon-shaped mesophase pitch-based fibers[J]. Carbon,2006,44(7):1298.
4 王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004:54.
5 Mochida I, Yoon S H, Korai Y. Mesoscopic structure and properties of liquid crystalline mesophase pitch and its transformation into carbon fiber[J]. Chemical Record,2010,2(2):81.
6 Gallego N C, Edie D D, Nysten B, et al. The thermal conductivity of ribbon-shaped carbon fibers[J]. Carbon,2000,38(7):1003.
7 Miyasaka K, Watannabe K, Jojima E. Electrical conductivity of carbon-polymer composites as a function of carbon content[J]. Mate-rials Science,1982,17(6):1610.
8 Carol Jones. Effects of electrochemical and plasma treatments on carbon fibre surfaces[J]. Surface and Interface Analysis,1993,20(5):357.
9 Tzeng S S, Chang F Y. EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites[J]. Materials Science & Engineering A,2001,302(2):258.
10 Mu B C, Liu B Y, Meng L K, et al. Spinel ceramic matrix composite reinforced by carbon fiber electroless plated[J]. Materials for Mechanical Engineering,2003,27(10):43(in Chinese).
穆柏春,刘秉余,孟力凯,等.化学镀碳纤维增强镁铝尖晶石基复合材料的研究[J].机械工程材料,2003,27(10):43.
11 Kang S S, Ji H, Gul H Z, et al. Metal-coated carbon fiber for ligh-ter electrical metal wires[J]. Synthetic Metals,2016,222:180.
12 Zuo J D, Chen S J, Luo C Y, et al. Praparation of electroless copper coated glass fiber and piezoresistive properties of copper coated glass fiber reinforced plastics[J]. Applied Surface Science,2015,349:319.
13 Lu W, Donepudi V S, Prakash J, et al. Electrochemical and thermal behavior of copper coated type MAG-20 natural graphite[J]. Electrochimica Acta,2002,47(10):1601.
14 Cui X Y, Hutt D A, Conway P P. Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate[J].Thin Solid Films,2012,520(19):6095.
15 Delamarche E, Vichiconti J, Hall S A, et al. Electroless deposition of Cu on glass and patterning with microcontact printing[J]. Langmuir,2003,19(17):6567.
16 Kim I S, Lee S K. Fabrication of carbon nanofiber/Cu composite powder by electroless plating and microstructural evolution during thermal exposure[J]. Scripta Materialia,2005,52(10):1045.
17 Huang C Y, Wu C C. The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites[J]. European Polymer Journal,2000,36(12):2729.
18 Hou W, Pan G P, Guan H, et al. Optimization of process conditions for electroless copper plating on carbon fiber[J]. Electroplating & Finishing,2007,26(9):23(in Chinese).
侯伟,潘功配,关华,等.碳纤维表面化学镀铜工艺的优化[J].电镀与涂饰,2007,26(9):23.
19 Chen H, Liu G, Xu C, et al. Copper@carbon fiber composites prepared by a simple electroless plating technique[J]. Materials Letters,2016,173:211.
20 Yu L G,Xu K W,He J W,et al. Effect of grain size on texture and stress analysis for cubic materials[J]. Acta Metallurgica Sinica,1995,31(17):233(in Chinese).
于利根,徐可为,何家文,等.晶粒度对立方系材料织构及残余应力分析的影响[J].金属学报,1995,31(17):233.
21 Zhang G P, Li M L, Wu X M, et al. Research progress on effect of length scale on electrical resistivity of metals[J]. Materials Research,2014,28(2):81(in Chinese).
张广平,李孟林,吴细毛,等.尺度对金属材料电阻率影响的研究进展[J].材料研究学报,2014,28(2):81.
22 Sherman R D, Middleman L M, Jacobs S M. Electron transport processes in conductor-filled polymers[J]. Polymer Engineering & Science,1983,23(1):36.
23 薛奇,张峻峰,薛辰晨.塑料表面镀铜提高与树脂和金属粘接强度的方法:中国,1068291[P].1993-01-27.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[5] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[6] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[7] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[8] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[9] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[10] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[11] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[12] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[13] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[14] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[15] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed