Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14072-14078    https://doi.org/10.11896/cldb.20040138
  无机非金属及其复合材料 |
模拟混凝土孔溶液中钢筋腐蚀与等效电路选取
刘国建1,*, 张云升2, 刘诚2, 吴萌2, 逄博2
1 苏州科技大学土木工程学院,苏州 215011
2 东南大学材料科学与工程学院,南京 211189
Corrosion of Steel in Simulated Concrete Pore Solution and Equivalent Circuits Selection
LIU Guojian1,*, ZHANG Yunsheng2, LIU Cheng2, WU Meng2, PANG Bo2
1 School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 85928KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对混凝土模拟孔溶液中钢筋腐蚀电化学阻抗响应,采用Kramers-Kronig转换对电化学阻抗数据进行了验证,定性、定量地讨论了模拟混凝土孔溶液中钢筋腐蚀等效模拟电路的选取原则。结果表明:试验中电化学阻抗数据线性、因果性、稳定性良好;经过视觉检验、卡方值检验、关键参数拟合值演变规律检验等步骤,可选出拟合结果良好且符合试验规律的电化学阻抗等效模拟电路R(Q(R(QR))),建议卡方值取值为10-4数量级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘国建
张云升
刘诚
吴萌
逄博
关键词:  混凝土  模拟孔溶液  钢筋腐蚀  电化学阻抗    
Abstract: Kramers-Kronig transform was applied to verify electrochemical impedance spectroscopy (EIS) data of steel corrosion in simulated concrete pore solution. The basic principles to determine optimal equivalent circuit for interpretation of EIS data were established based on qualitative and quantitative discussions. Results showed that EIS data in present study conform to linearity, causality and stability. Through visual inspection, Chi-square method and key simulated parameters evolution check, the equivalent circuit of R(Q(R(QR))) proved to be optimal to simulate the EIS data of corrosion process in simulated pore solution. Additionally, Chi-square value was suggested to be within the range of 10-4 order of magnitude.
Key words:  concrete    simulated pore solution    steel corrosion    EIS
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52008284);江苏省高等学校自然科学研究项目(20KJB560004);国家973计划(2015CB655100)
通讯作者:  * liuguojian@usts.edu.cn   
作者简介:  刘国建,博士,苏州科技大学土木工程学院,讲师。2019年毕业于东南大学材料科学与工程学院,获工学博士学位。主要研究方向包括钢筋锈蚀、严酷环境下混凝土耐久性与水泥基材料微结构表征。
引用本文:    
刘国建, 张云升, 刘诚, 吴萌, 逄博. 模拟混凝土孔溶液中钢筋腐蚀与等效电路选取[J]. 材料导报, 2021, 35(14): 14072-14078.
LIU Guojian, ZHANG Yunsheng, LIU Cheng, WU Meng, PANG Bo. Corrosion of Steel in Simulated Concrete Pore Solution and Equivalent Circuits Selection. Materials Reports, 2021, 35(14): 14072-14078.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040138  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14072
1 Hou B, Li X, Ma X, et al. NPJ Materials Degradation,2017,1(1),4.
2 Ke W. China corrosion investigation report, Chemical Industry Press, China,2003(in Chinese).
柯伟.中国腐蚀调查报告, 化学工业出版社,2003.
3 Epelboin I, Keddam M, Takenouti H. Journal of Applied Electrochemistry,1972,2(1),71.
4 Zhang J Q, Cao C N. Journal of Chinese Society for Corrosion and Protection,1991,11(2),105(in Chinese).
张鉴清, 曹楚南.中国腐蚀与防护学报,1991,11(2),105.
5 Liu G, Zhang Y, Ni Z, et al. Construction and Building Materials,2016,115,1.
6 Qiao H X, Wen S Y, Wang P H, et al. Journal of Building Materials,2019,22(6),999(in Chinese).
乔宏霞, 温少勇, 王鹏辉, 等.建筑材料学报,2019,22(6),999.
7 Shi J J, Sun W. Journal of the Chinese Ceramic Society,2010,38(9),155(in Chinese).
施锦杰, 孙伟.硅酸盐学报,2010,38(9),155.
8 He H Z, Fan L C. Journal of Tongji University (Natural Science),2005,33(1),33(in Chinese).
贺鸿珠, 范立础.同济大学学报(自然科学版),2005,33(1),33.
9 Shi M, Chen Z, Sun J. Cement and Concrete Research,1999,29,1685.
10 Boukamp B. Journal of the Electrochemical Society,1995,142(6),1885.
11 Schönleber M, Klotz D, Ivers-Tiffée E. Electrochimica Acta,2014,131,20.
12 Liu G, Zhang Y, Wu M, et al. Construction and Building Materials,2017,157,357.
13 Galván J C, Larrea M T, Braceras I, et al. Journal of Alloys and Compounds,2016,676,414.
[1] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[2] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[3] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[4] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[5] 牛建刚, 许文明, 梁剑. 受压区局部约束塑钢纤维轻骨料混凝土梁的抗弯性能[J]. 材料导报, 2021, 35(8): 8056-8063.
[6] 陈宗平, 周济, 王成, 苏炜炜. 高温喷水冷却后圆钢管再生混凝土短柱轴压性能试验及剩余承载力评估[J]. 材料导报, 2021, 35(7): 7033-7041.
[7] 杨世玉, 赵人达, 曾宪帅, 贾文涛, 靳贺松, 李福海. 用自然纤维增强地聚物材料:综述[J]. 材料导报, 2021, 35(7): 7107-7113.
[8] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[9] 陈新明, 史玉良, 焦华喆, 靳翔飞, 吴亚闯, 谭毅. 基于搜索锥算法的纤维分布特征及对BFRC的增强机制[J]. 材料导报, 2021, 35(4): 4061-4066.
[10] 张戎令, 郝兆峰, 王起才, 马丽娜, 吕文达, 李文波. 核心混凝土缺陷对钢管混凝土构件徐变影响规律及预测模型研究[J]. 材料导报, 2021, 35(4): 4099-4104.
[11] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[12] 王尚伟, 朱海堂, 王博, 寇磊. 混凝土配合比优化设计的紧密堆积理论综述[J]. 材料导报, 2021, 35(3): 3085-3091.
[13] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[14] 钱珊珊, 姚燕, 王子明, 崔素萍, 刘晓, 郑春扬. 降低高强混凝土黏度的减水剂制备与机理研究[J]. 材料导报, 2021, 35(2): 2046-2051.
[15] 刘鑫, 倪铖伟, 孙东宁, 邵志伟, 史云强. 干湿循环下含初始损伤泡沫混凝土劣化机理研究[J]. 材料导报, 2021, 35(14): 14065-14071.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed