Please wait a minute...
材料导报  2021, Vol. 35 Issue (20): 20035-20039    https://doi.org/10.11896/cldb.20080223
  无机非金属及其复合材料 |
基于灰靶决策对BFCC力学性能及抗渗性能的评估
何晓雁, 张智鑫, 赵燕茹, 郝贠洪, 秦立达
内蒙古工业大学土木工程学院,呼和浩特 010051
Evaluation of Permeability and Mechanical Properties of BFCC Based on Gray Target Decision
HE Xiaoyan, ZHANG Zhixin, ZHAO Yanru, HAO Yunhong, QIN Lida
School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 4551KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 试验研究了不同纤维长度和不同应力比条件下BFCC抗压强度及抗渗性能的变化规律,运用灰色系统理论对BFCC的抗压强度、电通量与孔结构参数进行灰色关联分析,运用多目标加权灰靶决策模型对不同应力比下的BFCC综合性能进行评估。研究表明:随纤维长度增加,BFCC抗压强度先增加后降低,BFCC电通量值持续减小;相同应力比条件下,延长养护龄期,BFCC的抗压强度增加,电通量值减小;养护龄期相同时,增加应力比,BFCC电通量值先减小后增大,且在应力比为0.2时为最小,而其抗压强度则呈持续减小的趋势。根据灰色关联分析结果,采用气泡间距系数从微观角度表征抗压强度的变化,采用气泡比表面积表征电通量的变化,运用多目标加权灰靶决策模型定量评估不同应力比下BFCC的综合性能,随应力比不断增大,BFCC相对综合性能指标不断减小,且其综合性能不断劣化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何晓雁
张智鑫
赵燕茹
郝贠洪
秦立达
关键词:  玄武岩水泥基复合材料  抗压强度  电通量  灰关联  灰靶决策    
Abstract: The compressive strength and impervious performance change rules of BFCC under different curing ages and different stress ratios are studied in this paper. Grey system theory is used to analyze the grey correlation of BFCC compressive strength, electric flux and pore structure parameters. The multi-objective weighted grey target decision model is used to evaluate the comprehensive performance of BFCC under different stress ratios. The results show that the compressive strength of BFCC increases first and then decreases with the increase of fiber length, and the electrical flux value of BFCC decreases continuously. Under the condition of the same stress ratio, the compressive strength of BFCC is increased and the electric flux is decreased when the curing period is prolonged. At the same curing age, when the stress ratio increases, the value of BFCC power flux first decreases and then increases, and it is the smallest when the stress ratio is 0.2, while the compressive strength continues to decrease. According to the results of grey correlation analysis, the bubble spacing coefficient was used to indicate the change of compressive strength and the specific surface area of the bubble was used to represent the change of electric flux. The multi-objective weighted grey target decision model is used to quantitatively evaluate the comprehensive performance of BFCC under different stress ratios. As the stress ratio increases, the relative comprehensive performance index of BFCC decreases and its comprehensive performance deteriorates.
Key words:  basalt cement matrix composites    compressive strength    electric flux    grey relation    gray target decision
               出版日期:  2021-10-25      发布日期:  2021-11-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金(11762015;11862022);内蒙古自治区自然科学基金(2018MS05047);内蒙古自治区教育厅(NJZY19080)
通讯作者:  2732108278@qq.com   
作者简介:  何晓雁,硕士,副教授,土木工程硕士研究生导师,现就职于内蒙古工业大学土木工程学院建筑工程系。主要从事混凝土力学性能及耐久性研究。
郝贠洪,博士,博士研究生导师,现任内蒙古工业大学研究生院院长。主要从事区域特殊环境下工程结构和材料耐久性损伤及评价研究。
引用本文:    
何晓雁, 张智鑫, 赵燕茹, 郝贠洪, 秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估[J]. 材料导报, 2021, 35(20): 20035-20039.
HE Xiaoyan, ZHANG Zhixin, ZHAO Yanru, HAO Yunhong, QIN Lida. Evaluation of Permeability and Mechanical Properties of BFCC Based on Gray Target Decision. Materials Reports, 2021, 35(20): 20035-20039.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080223  或          http://www.mater-rep.com/CN/Y2021/V35/I20/20035
1 Zeng Y S, Zhou X Y, Tang A P, et al. Materials,2020,13(7),1715.
2 Jalasutram S, Sahoo D R, Matsagar V. Structural Concrete,2017,18(2),292.
3 Wang Q X, Ding Y, Zhang Y L, et al. Structural Concrete, DOI:10.1002/suco.201900482.
4 Zhang N, Zhou J, Xu M F, et al. Explosion and Shock Waves,2020,40(5),42(in Chinese).
张娜,周健,徐名凤,等.爆炸与冲击,2020,40(5),42.
5 Jin J D. Experimental study on chloride penetration resistance of basalt fiber reinforced concrete. Master’s Thesis, Harbin Engineering University, China,2017 (in Chinese).
金建东.玄武岩纤维增强混凝土抗氯离子渗透性能试验研究.硕士学位论文,哈尔滨工程大学,2017.
6 Di Taoniu, Li Su, Yang Lu, et al. Construction and Building Materials, DOI:10.1016/j.conbuildmat.2019.117628.
7 Lu Z H, Wang L L, Ye W Y, et al. Journal of Highway and Transportation Research and Development,2014,31(6),80(in Chinese).
卢照辉,王璐璐,叶文亚,等.公路交通科技,2014,31(6),80.
8 Liu W Q. Research on performance evaluation and maintenance decision of cement concrete pavement. Master’s Thesis, Changsha University of Science and Technology, China,2008(in Chinese).
刘伟强.水泥混凝土路面性能评估及养护决策研究.硕士学位论文,长沙理工大学,2008.
9 Wang S. Damage evolution analysis and performance evaluation of steel-concrete test model under earthquake action. Master’s Thesis, Beijing Jiaotong University, China,2014(in Chinese).
王苏.地震作用下钢-混凝土试验模型结构损伤演化分析与性能评估.硕士学位论文,北京交通大学,2014.
10 Wu C, Pan Z F, Jin C H, et al. Engineering Structures, DOI: 10.1016/j. engstruct.2020.110499.
11 Xu J G, Wu G, Tang Y C, et al. China Civil Engineering Journal,2019,52(10),46(in Chinese).
徐积刚,吴刚,汤昱川,等.土木工程学报,2019,52(10),46.
12 Yan D. Evaluation of seismic and isolation performance of reinforced concrete frame structures based on FEMA P-58. Master’s Thesis, Institute of Engineering Mechanics, China Earthquake Administration, China,2019(in Chinese).
燕登.基于FEMA P-58的钢筋混凝土框架结构抗震及减隔震性能评估.硕士学位论文,中国地震局工程力学研究所,2019.
13 Lin Q. Study on constitutive model of concrete fatigue damage and fatigue performance evaluation method. Master’s Thesis, Hefei University of Technology, China,2019(in Chinese).
林沁.混凝土疲劳损伤本构模型及疲劳性能评估方法研究.硕士学位论文,合肥工业大学,2019.
14 Xue M K. Study on mechanical properties of basalt and polypropylene fiber reinforced concrete. Master Thesis, Anhui University of Science and Technology, China,2018(in Chinese).
薛明凯.玄武岩与聚丙烯双掺纤维混凝土力学性能研究.硕士学位论文,安徽理工大学,2018.
15 GB/T50081-2016, Standard for text methods of mechanical performance of ordinary concrete, China Architecture, Building Press, China,2016(in Chinese).
GB/T50081-2016,普通混凝土力学性能试验方法标准,中国建筑工业出版社,2016.
16 GB/T50082-2009, Standard for text methods of long-term performance and durability of ordinary concrete, China Architecture, Building Press, China,2009(in Chinese).
GB/T50082-2009,普通混凝土长期性能和耐久性能试验方法标准,中国建筑工业出版社,2009.
[1] 代金芯, 石宵爽, 王清远, 张红恩, 栾晨晨, 张宽裕, 杨富花. 多因素对再生复合掺料基地聚物混凝土抗压强度的影响[J]. 材料导报, 2021, 35(9): 9077-9082.
[2] 龚建清, 罗鸿魁, 张阳, 龚啸, 谢泽酃, 吴五星, 戴远帆. 减缩剂和HCSA膨胀剂对UHPC力学性能和收缩性能的影响[J]. 材料导报, 2021, 35(8): 8042-8048.
[3] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[4] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[5] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[6] 李碧雄, 汪知文, 苏柳月, 冷发光. 减小EPS混凝土收缩的配合工艺试验研究[J]. 材料导报, 2021, 35(16): 16021-16027.
[7] 黄炜, 周烺, 葛培, 杨涛. 基于PSO-BP和GA-BP神经网络再生砖骨料混凝土强度模型的对比研究[J]. 材料导报, 2021, 35(15): 15026-15030.
[8] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[9] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[10] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[11] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[12] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[13] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[14] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[15] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed