Please wait a minute...
材料导报  2021, Vol. 35 Issue (17): 17199-17209    https://doi.org/10.11896/cldb.20020090
  无机非金属及其复合材料 |
应变硬化水泥基复合材料动力学性能研究现状与进展
郭伟娜1, 张鹏1,2, 鲍玖文1, 孙治国3, 田玉鹏1, 赵凯月1, 赵铁军1,2
1 青岛理工大学土木工程学院,青岛 266033
2 青岛理工大学,山东省蓝色经济区工程建设与安全协同创新中心,青岛 266033
3 防灾科技学院土木工程学院,北京 101601
Review of Dynamic Mechanical Property of Strain-Hardening Cementitious Composite
GUO Weina1, ZHANG Peng1,2, BAO Jiuwen1, SUN Zhiguo3, TIAN Yupeng1, ZHAO Kaiyue1, ZHAO Tiejun1,2
1 College of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
2 Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao 266033, China
3 School of Civil Engineering, Institute of Disaster Prevention, Beijing 101601, China
下载:  全 文 ( PDF ) ( 7673KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应变硬化水泥基复合材料(Strain-hardening cementitious composites,SHCC)作为一种高延性水泥基复合材料在结构修复和改造、加固无筋砌体墙、加固钢筋混凝土梁和防冲击或防爆板等方面具有广阔的应用前景。对SHCC的动力学性能进行详细研究有利于其在抗冲击或抗爆结构中的广泛应用。
针对不同基质组成、纤维类型的SHCC静力学性能的理论分析和试验研究已经相对完善,然而对于SHCC动力学性能的研究主要集中在不同应变率、纤维类型及基质组成等对其动力学性能的影响。但针对高、超高应变率和围压等因素作用下的动力学性能研究尚未形成统一认识,同时也未明确得到SHCC动力学性能具体发展机理。
近期研究结果表明:SHCC具有明显的应变率效应。在动态加载下,SHCC的应力和断裂能随着应变率的提高而提高,而其应变则相反。更深一步的研究表明,通过在SHCC中掺加粉煤灰等废料来改善纤维与基质之间的粘结可以明显提高其冲击能量耗散能力。
本文系统地总结了国内外相关研究学者对SHCC动力学性能的研究现状,综述了SHCC动力学试验设备的原理、组成、优缺点及施加的应变率范围,同时进一步阐述了不同动力学试验设备在SHCC动力学性能研究方面的应用;然后对SHCC动态拉伸、压缩及侵彻性能进行归纳,全面揭示了应变率、纤维类型及基质组成对SHCC动力学性能发展的影响规律;最后,探讨了SHCC动力学性能研究领域所面临的问题,意在为日后SHCC动力学性能的理论分析和试验研究提供一定的建议和方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭伟娜
张鹏
鲍玖文
孙治国
田玉鹏
赵凯月
赵铁军
关键词:  应变硬化水泥基复合材料  应变率  多缝开裂  动力学性能  冲击    
Abstract: Strain-hardening cementitious composites (SHCC) is generally accepted as high ductile cementitious composites. It shows superiority in practical applications including structure repair and modification, strengthening unreinforced masonry wall and reinforced concrete beams, etc. A detailed study on the dynamic properties of SHCC is beneficial to its wide application in anti-impact or anti-blast structures.
The theoretical analysis and experimental research regarding the static properties of SHCC with various matrix and fiber types had acquired fruitful results. The research on its dynamic properties mainly considers the effect such as strain rate, fiber type and matrix composition. However, there still lacks comprehensive understanding on the dynamic performance of SHCC when taking factors of high, ultra-high strain rate, confinements into consideration.
The recent research results indicate that SHCC exhibits manifest strain rate effect. Its stress and fracture energy as the strain rate increase when dynamic loading was applied. Further research shows that the impact energy dissipation capacity of SHCC can be significantly improved by adding fly ash and other wastes to improve the adhesion between fiber and matrix.
This paper systematically summarizes the research status of SHCC dynamic performance by domestic and foreign scholars and reviews the principle, composition, advantages and disadvantages of SHCC test equipment. At the same time, the application of different dynamic test equipment in the research of SHCC dynamic performance is further elaborated. Then the dynamic tensile, compression and penetration properties of SHCC are summarized, and the influence of strain rate, fiber type and matrix composition on the development of SHCC dynamic performance research are discussed, which is intended to provide certain suggestions and directions for the theoretical analysis and experimental research of SHCC dynamic performance in the future.
Key words:  SHCC    strain rate    multiple racking    dynamic performance    impact
                    发布日期:  2021-09-26
ZTFLH:  TU528  
基金资助: 国家自然科学基金(U1706222;51922052;51778309);山东省自然科学基金(ZR2018JL018);清华大学水沙科学与水利水电工程国家重点实验室开放基金项目(SKLHSE-2019-C-04)
通讯作者:  peng.zhang@qut.edu.cn   
作者简介:  郭伟娜,2016年6月毕业于山东科技大学,获得工学硕士学位。现为青岛理工大学土木工程学院博士研究生,在张鹏教授的指导下进行研究。目前主要研究领域为SHCC材料的自愈合及动力学性能。
张鹏,青岛理工大学土木工程学院副院长、教授、博士研究生导师,德国“洪堡学者”,国家优青,是国际材料与结构实验研究联合会RILEM TC-FTC副主任委员、RILEM TC-MMB技术委员会委员,国际结构混凝土协会会员,山东省土木水利类专业教指委秘书长等。主持国家自然科学基金3项、山东省优青1项;参与重点国际合作项目、学科创新引智“111计划”项目、国家基金重点项目等10余项科研课题。发表学术论文87篇,参编国家行业/团体标准5部。研究成果在胶州湾海底隧道、青岛地铁等重大工程中成功应用。
引用本文:    
郭伟娜, 张鹏, 鲍玖文, 孙治国, 田玉鹏, 赵凯月, 赵铁军. 应变硬化水泥基复合材料动力学性能研究现状与进展[J]. 材料导报, 2021, 35(17): 17199-17209.
GUO Weina, ZHANG Peng, BAO Jiuwen, SUN Zhiguo, TIAN Yupeng, ZHAO Kaiyue, ZHAO Tiejun. Review of Dynamic Mechanical Property of Strain-Hardening Cementitious Composite. Materials Reports, 2021, 35(17): 17199-17209.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020090  或          http://www.mater-rep.com/CN/Y2021/V35/I17/17199
1 Wu R X, Zhao T J, Ma W. Concrete, 2013(10), 14(in Chinese).
吴瑞雪,赵铁军,马万. 混凝土,2013(10), 14.
2 Liu H, Zhang Q, Gu C, et al. Cement Concrete Composites, 2017, 82, 14.
3 Qureshi T S, AL-Tabbaa A. Smart Materials and Structures, 2016, 25(8), 1.
4 Zhang P, Dai Y, Ding X, et al. Construction and Building Materials, 2018, 169, 705.
5 Li V C, Wang S, Wu C. ACI Materials Journal, 2001, 98(6), 483.
6 Wang S, Li V C. ACI Materials Journal, 2007, 104(3), 233.
7 Li V C, Wu H. Applied Mechanicals Reviews, 1992, 45(8), 390.
8 Li V C. Advanced Concrete Technology, 2003, 1(3), 215.
9 Mechtcherine V, Millon O, Butler M, et al. Cement Concrete Composite, 2011, 33, 1.
10 Chen Zhitao, Yang Yingzi, Yao Yan. Materials and Design, 2013, 44, 500.
11 Zhang W H, Liu P Y, Lv Y J. Materials Reports A: Review Papers, 2019, 33(10), 3257(in Chinese).
张文华,刘鹏宇,吕毓静. 材料导报:综述篇, 2019, 33(10), 3257.
12 Elnagar A B, Afefy H M, Baraghith A T, et al. Construction and Buil-ding Materials, 2019, 229, 1.
13 Yu K Q, Dai J G, Lu Z D, et al. Journal Material Civil Engineer, 2014, 27(10), 1.
14 Yu K Q, Lu Z D, Yu J T. Construction and Building Materials, 2015, 98, 146.
15 Yu K Q, Wang Y C, Yu J T, et al. Construction and Building Materials, 2017, 137, 410.
16 Li V C, Wang S, Wu C. ACI Materials Journal, 2001,98(6), 483.
17 Jun P, Mechtcherine V. Cement Concrete Composite, 2010, 32(10), 801.
18 Li V C, Mishra D K, Naaman A E, et al. Advanced Cement Based Materials, 1994, 1(3), 142.
19 Nawy E. Concrete construction engineering handbook, USA, 2007.
20 Zhou J, Qian S, Ye G, et al. Material Structural, 2010, 43(6), 803.
21 Li V C. Journal Advance Concrete Technology, 2003, 1, 215.
22 Yang E H, Sahmaran M, Yang Y, et al. ACI Materials Journal, 2009, 106(4), 357.
23 Wittmann F H. Restoration of Buildings and Monuments, 2006, 12(2), 109.
24 Van Zijl G P A G. Cement and Concrete Research, 2007, 37, 1241.
25 Şahmaran M, Li V C. Cement and Concrete Research, 2009, 39, 1033.
26 Li V C. Journal of Structural Mechanics and Earthquake Engineering, 1993, 10(2), 37.
27 Yang E H, Yang Y Z, Li V C. ACI Materials Journal, 2007, 104(6), 620.
28 Yang E H, Li V C. Cement and Concrete Research, 2012, 42, 1066.
29 Yu Kequan, Li Lingzhi, Yu Jiangtao, et al. Construction and Building Materials, 2018, 165, 346.
30 Xu Z, Hao H, Li H N. Materials and Design, 2012, 33, 42.
31 Kim Y Y, Kong l J, Li V C. In: Conference Record of the HPFRCC-4, Ann Arbor Michigan, USA, 2003, pp. 233.
32 Kim Y Y, Kong H J, Li V C. ACI Materials Journal, 2003, 100(6), 511.
33 Kong H J, Bike S, Li V C. Cement and Concrete Composites, 2003, 25(3), 301.
34 Li V C. Materials and Structures, 2007, 40(4), 387.
35 Kong H J, Bike S, Li V C. Cement and Concrete Composites, 2003, 25(3), 333.
36 Stang H, Li V C. In: Conference Record of High Performance Fiber Reinforced Cement Composites 3 (HPFRCC3). Mainz, Germany, 1999,pp. 203.
37 De Koker D, Zi jl van G. In: Conference Record of BEFIB. Varenna Lake Como, Italy, 2004, pp. 1301.
38 Wang S, Li V C. ACI Materials Journal, 2006, 103(2), 97.
39 Li V C. Concrete Structures and Materials, 2012, 6(3), 135.
40 Wang S, Li V C. In: Conference Record of HPFRCC4. Ann Arbor Michi-gan, USA, 2003, pp. 379.
41 Qian Z, Li V C. In: Conference Record of the 4th International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC4). Dresden, Germany, 2017, pp. 70.
42 Ranade R, Li V C, Stults M D, et al. ACI Materials Journal, 2013, 110(4), 413.
43 Ranade R, Li V C, Stults M D, et al. ACI Materials Journal, 2013, 110(4), 375.
44 Yu K Q, Yu J T, Lu Z D. In: Conference Record of the 4th International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC4). Dresden, Germany, 2017, pp. 230.
45 Ragalwar K A, Nguyen H, Ranade R, et al. In: Conference Record of the 4th International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC4). Dresden, Germany, 2017, pp. 221.
46 Li V C, Lepech M, Wang S, et al. In: Conference Record of Workshop on Sustainable Development and Concrete Technology, Beijing, China, 2004, pp. 181.
47 Lepech M D, Li V C, Robertson R E, et al. ACI Materials Journal, 2008(6), 567.
48 Yang Y, Lepech, M, Li V C. In: Conference Record of Workshop on Durability of Reinforced Concrete under Combined Mechanical and Climatic Loads (CMCL), Qingdao, China. 2005, pp.231.
49 Li V C, Yang E H. In: Conference Record of Self Healing Materials: An Alternative Approach to 20 Centuries of Materials Science, Noordwijk aan Zee, Netherlands, 2007, pp. 161.
50 Yang E, Li V C. In: Conference Record of International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites (HPFRCC) in Structural Applications, Ann Arbor, USA, 2005, pp. 83.
51 Zhang J, Maalej M, Quek S T. Materials Civil Engineering, 2007, 19(10), 855.
52 Ranade R, Li V C, Heard W F, et al. Cement and Concrete Research, 2017, 98, 24.
53 Yang E H, Li V C. Cement and Concrete Research, 2012,42, 1066.
54 Yao Y M, Silva F A, ASCE A M, et al. Materials in Civil Engineering, 2017, 29(11), 1.
55 Ali M A E M, Soliman A M, Nehdi M L. Materials and Design, 2017, 117, 139.
56 D Snoeck, T De Schryver, N De Belie. Construction and Building Materials, 2018, 191, 13.
57 Heravi A A, Smirnova O, Mechtcherine V. In: Conference Record of the 4th International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC4). Dresden, Germany, 2017, pp. 266.
58 Meng H, Li Q M. Impact Engineering, 2003, 28, 537.
59 Xia K W, Yao W. Rock Mechanics and Geotechnical Engineering, 2015, 7(1), 27.
60 Lok T S, Zhao P J. Materials in Civil Engineering, 2004, 16(1), 54.
61 Jiang X Q, Hu S S. In: Conference Record of the Hopkinson bar experiment technology seminar. Huangshan, China, 2007, pp. 156.(in Chinese).
姜锡权, 胡时胜.Hopkinson 杆实验技术研讨会会议论文集. 黄山, 中国, 2007, pp. 156.
62 Meyer L W, Staskewitsch E, Burblies A. Mechanics of Materials, 1994, 17(2-3),203.
63 Fang Y Y. Study on dynamic mechanical properties of carbon fiber reinforced composite materials under high strain rate. Master’s Thesis, Dalian University of Technology, China, 2018(in Chinese).
方盈盈. 高应变率下碳纤维复合材料动态力学性能研究. 硕士学位论文,大连理工大学,2018.
64 Al-Salloum Y, Almusallam T, Ibrahim S M, et al. Cement and Concrete Composites, 2015, 55, 34.
65 Guo Y B, Gao G F, Jing L, et al. Impact Engineering, 2017, 108, 114.
66 Zhang Y L. Study on anti-penetration properties of SFRC and evolution of stress wave. Ph.D. Thesis, University of Science and Technology of China, China, 2018(in Chinese).
张永亮. 钢纤维混凝土材料的抗爆性能抗侵彻性能研究及应力波演化.中国科学技术大学,2018.
67 Curosu I, Mechtcherine V, Forni D, et al. Cement and Concrete Research, 2017, 102, 16.
68 Curosu I, Mechtcherine V, Millon O. Cement and Concrete Research, 2016, 82, 23.
69 Mechtcherine V, Millon O, Butler M, et al. Cement and Concrete Composites, 2011, 33, 1.
70 Curosu I, Mechtcherine V, Forni D, et al. In: Conference Record of the 4th International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC4). Dresden, Germany, 2017, pp.257.
71 Curosu I, Jan A A, Mechtcherine V. In: Conference Record of the 3rd International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC3). Dordrecht, Netherlands, 2014, pp. 121.
72 Maalej M, Quek S T, Zhang J. Materials in Civil Engineering, 2005, 17(2), 143.
73 Li J, Zhang Y X. Construction and Building Materials, 2012, 30, 149.
74 Soe K T, Zhang Y X, Zhang L C. Composite Structures, 2013, 104, 320.
75 Lu C, Yu J, Christopher K Y Leung. Construction and Building Mate-rials, 2018, 171, 566.
76 Ackeren J V, Blom J, Kakogiannis D, et al. In: Conference Record of the 2nd International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC2). New York, USA, 2014, pp.399.
77 Xue W. Study on dynamic response of RC beams under drop hammer impact. Master’s Thesis, Huazhong University of Science and Technology, China, 2016(in Chinese).
薛文. 落锤冲击作用下RC梁的动力响应研究. 硕士学位论文,华中科技大学,2016.
78 Yan D M, Lin G. Water Sciences and Engineering Technology, 2007(1), 1(in Chinese).
闫东明,林皋. 水科学与工程技术,2007(1), 1.
79 Ohkubo M, Fujishiro M, Matsushima Y, et al. In: Conference Record of the 3rd International RILEM Conference on Strain-Hardening Cement-Based Composites (SHCC3). Dordrecht, Netherlands, 2014, pp.373.
80 Yang E H, Li V C. Construction and Building Materials, 2014, 52, 96.
81 Mechtcherine V, Silva F D A, Butler M, et al. Journal Advanced Concrete Technology, 2011, 9(1), 51.
82 Zhou H Q, Zhang F G, Pan H, et al. Chinese Journal of High Pressure Physics, 2019, 5, 1(in Chinese).
周洪强, 张凤国, 潘昊,等. 材料层裂研究的主要进展. 高压物理学报, 2019, 5, 1.
83 Soe K T, Zhang Y X, Zhang L C. Composite Structures, 2013, 10, 320.
[1] 陈立超, 王生维, 张典坤. 基于SHPB实验的煤层气井固井水泥冲击能量耗散特征研究[J]. 材料导报, 2021, 35(Z1): 232-237.
[2] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[3] 崔俊杰, 郭章新, 朱明, 李永存, 栾云博, 杨强. 表面带金属层的复合材料层合板低速冲击数值模拟[J]. 材料导报, 2021, 35(4): 4150-4158.
[4] 王森, 赖家美, 阮金琦, 胡根泉, 黄志超. 不同粒子改性环氧树脂基碳纤维复合材料低速冲击及冲击后压缩性能[J]. 材料导报, 2021, 35(2): 2178-2184.
[5] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[6] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[7] 滕凌虹, 曹伟伟, 朱波, 秦溶蔓. ABAQUS在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展[J]. 材料导报, 2021, 35(11): 11145-11153.
[8] 陈志凯, 关婷婷, 李强, 王井, 员霄. 激光淬火40Cr钢的冲击磨损行为研究[J]. 材料导报, 2020, 34(Z2): 407-411.
[9] 武海鹏, 王威力. 复合材料层合板低速冲击下剩余强度的评价[J]. 材料导报, 2020, 34(Z2): 598-602.
[10] 周文娟, 侯云芬, 郑东昊. 玻璃纤维对再生骨料板力学性能的影响[J]. 材料导报, 2020, 34(Z1): 216-219.
[11] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[12] 甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
[13] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[14] 陈首, 石少卿, 何秋霖, 李季. 金属网增强混凝土抗冲击性能的试验研究与数值模拟[J]. 材料导报, 2020, 34(20): 20046-20052.
[15] 陈方, 姚卫星, 吴富强. 复合材料T型加筋低速边缘冲击及剩余压缩强度的数值仿真分析[J]. 材料导报, 2020, 34(20): 20130-20136.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed