Please wait a minute...
材料导报  2021, Vol. 35 Issue (18): 18059-18063    https://doi.org/10.11896/cldb.20070161
  无机非金属及其复合材料 |
PMMA光纤直径对透光水泥基复合材料性能的影响
乔师帅, 王元, 贾朝阳, 蒋一昌, 魏剑
西安建筑科技大学材料科学与工程学院,西安 710055
The Influence of Fiber PMMA Diameter on the Properties of Light-transmitting Cement-based Composites
QIAO Shishuai, WANG Yuan, JIA Zhaoyang, JIANG Yichang, WEI Jian
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 9028KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透光水泥基复合材料是一种集承载、采光和装饰功能于一体的绿色建筑材料,可以作为建筑围护结构应用于墙面和地面空间。虽然光纤直径对透光水泥基复合材料的力学和透光性能影响显著,但目前光纤直径与透光水泥复合材料性能之间的关系仍缺乏系统研究。本工作中采用直径为0.25~1.00 mm的聚甲基丙烯酸甲酯(PMMA)光纤,系统研究了其直径对透光水泥基复合材料力学性能、透光性能以及孔隙率的影响规律。结果表明:压力载荷方向垂直于光纤轴向时,透光水泥基复合材料的抗压强度和抗折强度在光纤直径为0.25 mm时分别达到了27.22 MPa和5.43 MPa,较水泥基体分别提高了9.76%和18.56%;压力载荷方向平行于光纤轴向时,透光水泥基复合材料的抗压强度和抗折强度在光纤直径为0.25 mm时分别达到了30.33 MPa和2.37 MPa,较水泥基体分别提高了22.30%和降低了48.25%。光纤/水泥基体界面有效阻碍了断裂时裂纹的扩展,提高了水泥基复合材料的强度,并且光纤直径越小,其对水泥的增强效果越显著。光纤掺入后水泥基复合材料变为各向异性材料,施加载荷的方向对其抗折强度影响显著,当载荷方向垂直于光纤轴向时,光纤的掺入对水泥基复合材料主要起到增韧增强的作用,提高了水泥基复合材料的抗折强度;当载荷方向平行于光纤轴向时,界面有效促进裂纹产生,抗折强度减小。透光水泥基复合材料的透光率在波长为400~800 nm时均小于理论值(1.0%),光线在PMMA光纤中传输时的固有损耗和界面散射,是影响复合材料透光率的重要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔师帅
王元
贾朝阳
蒋一昌
魏剑
关键词:  水泥基复合材料  透光性能  聚甲基丙烯酸甲酯(PMMA)光纤  力学性能    
Abstract: The light-transmitting cement-based composites (LTCC) is a green building material that integrates the functions of load-bearing, lighting and decoration. It can be used as a building envelope for wall and floor spaces. However, the fiber diameter has a significant effect on the mechanical properties and light transmission properties of the LTCC. However, the relationship between the fiber diameter and the performance of the LTCC is still lacking in systematic research. In this paper, a fiber with a diameter of 0.25—1.00 mm is used. The influence of its diameter on the mechanical properties, light transmission properties and porosity of the LTCC is systematically studied. The results show that when the pressure load direction is perpendicular to the fiber axis, the compressive strength and flexural strength reach 27.22 MPa and 5.43 MPa respectively when the fiber diameter is 0.25 mm, which is an increase of 9.76% and 18.56% compared to the cement matrix. When the direction of the pressure load is parallel to the axial direction of the fiber, the compressive strength and flexural strength reach 30.33 MPa and 2.37 MPa respectively when the fiber diameter is 0.25 mm, which are 22.30% higher and 48.25% lower than that of the cement matrix. The fiber/cement matrix interface effectively hinders the propagation of cracks during fracture and improves the strength of the cement-based composite material, and the smaller the fiber diameter, the more significant the enhancement effect. After the fiber is incorporated, the cement-based composite material becomes an anisotropic material, and the direction of the applied load has a significant effect on its flexural strength. When the load direction is perpendicular to the axial direction of the optical fiber, the incorporation of the optical fiber mainly plays a role of toughening and strengthening, and the flexural strength is improved; when it is parallel to the axial direction of the optical fiber, the interface effectively promotes cracks, then reduces the flexu-ral strength. The light transmittance of the LTCC is less than the theoretical value (1.0%) at 400—800 nm. The inherent loss and interface scatte-ring in the transmission process of light PMMA fiber are important reasons that affect the light transmittance of the composite material.
Key words:  cement-based composites    light transmittance    polymethyl methacrylate (PMMA) fiber    mechanical properties
               出版日期:  2021-09-25      发布日期:  2021-09-30
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(51578448; 51308447);陕西省自然科学基础研究计划重大基础研究项目(2017ZDJC-18);留学人员科技活动择优资助项目(陕人社函 [2016]789号);陕西省教育厅重点科学研究计划项目(20JY042)
作者简介:  乔师帅,2017年6月毕业于西安建筑科技大学,材料科学与工程专业。现就读于西安建筑科技大学,攻读工程硕士学位,主要从事透光水泥基复合材料的相关研究。
魏剑,西安建筑科技大学材料科学与工程学院,副院长,纳米材料研究所,所长。2008年毕业于西北工业大学材料学院,博士研究生。主要从事于导电/热电水泥基复合材料、锂电池材料、导电/纳米纤维与膜材料、低维纳米材料规模制备技术的研究。出版高等学校规划教材2部,发表学术论文50余篇,WOS他引超过540次,第一/通讯作者在国际著名期刊发表论文32篇(其中,SCI论文26篇,一区论文11篇,单篇最高SCI他引60次),申请和授权发明专利20项。
引用本文:    
乔师帅, 王元, 贾朝阳, 蒋一昌, 魏剑. PMMA光纤直径对透光水泥基复合材料性能的影响[J]. 材料导报, 2021, 35(18): 18059-18063.
QIAO Shishuai, WANG Yuan, JIA Zhaoyang, JIANG Yichang, WEI Jian. The Influence of Fiber PMMA Diameter on the Properties of Light-transmitting Cement-based Composites. Materials Reports, 2021, 35(18): 18059-18063.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070161  或          http://www.mater-rep.com/CN/Y2021/V35/I18/18059
1 Li Y, Li J Q, Wan Y H, et al. Construction & Building Materials, 2015,96(15),319.
2 Mainini A G, Poli T, Zinzi M, et al. Energy Procedia,2014, 48,1292.
3 Chen Y. Research on the application of transparent concrete materials in architectural design. Master's Thesis, Nanjing University, China, 2011 (in Chinese).
陈瑶. 透明混凝土材料在建筑设计中的应用研究. 硕士学位论文, 南京大学, 2011.
4 Wu Y H. Research on intelligent transparent concrete products and their properties. Master's Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
吴源华. 智能透明混凝土制品及其性能研究. 硕士学位论文, 哈尔滨工业大学, 2010.
5 Li Y, Xu Z Y. Concrete,2013(4),141(in Chinese).
李悦, 许志远. 混凝土,2013(4),141.
6 Salih S A, Joni H H, Mohamed S A. Engineering and Technology Journal, 2014, 32,2846.
7 Li L, Cai L, Chen H, et al.Tile, 2016(11),62 (in Chinese).
李良, 蔡林, 陈昊,等.砖瓦, 2016(11),62.
8 Zhou Z, Shen J, Jiao S Y, et al.Functional Materials,2016(47),12007 (in Chinese).
周智, 申娟, 焦思雨,等. 功能材料, 2016(47), 12007.
9 Li V C, Maalej M.Cement and Concrete Composites, 1996,18(4), 239.
10 Divanedari H, Eskandari-Naddaf H. Construction and Building Materials, 2020,233,117207.
11 Liu J, Jia Y, Wang J.Fibers and Polymers,2019, 20(9), 1900.
12 Lemeshev D O, Makarov N A, Ikonnikov K I. Glass & Ceramics,2012, 69(5-6), 178.
13 Henriques T D S, Dal Molin D C, Masuero  B. Construction and Buil-ding Materials, 2018, 161,305.
[1] 刘宝友, 岳新艳, 冯东, 茹红强, 刘春明. 碳含量对无压烧结碳化硅陶瓷的显微组织和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 169-171.
[2] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[3] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[4] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[5] 徐连勇, 高雅琳, 赵雷, 韩永典, 荆洪阳. Hastelloy X激光熔覆工艺及组织性能[J]. 材料导报, 2021, 35(Z1): 357-361.
[6] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[7] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[8] 刘甲, 陈高澎, 马照伟, 雷小伟, 贾晓飞, 崔永杰. 钛合金混合保护气等离子弧焊接头组织及性能[J]. 材料导报, 2021, 35(Z1): 371-373.
[9] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[10] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[11] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 李道秀, 韩梦霞, 张将, 彭银江, 孙谦谦, 刘桂亮, 刘相法. 细晶Al-Si-Mg合金的组织遗传性与高屈服强度设计[J]. 材料导报, 2021, 35(9): 9003-9008.
[14] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[15] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed