Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 24030040-6    https://doi.org/10.11896/cldb.24030040
  高分子与聚合物基复合材料 |
多羧酸镍配合物催化降解罗丹明B的活性与机理
刘洋1,*, 马占营1, 李午戊1, 郭乃妮1, 侯磊2,*, 樊星宇1, 王樱嫒1, 王尧宇2
1 咸阳师范学院化学与化工学院,陕西 咸阳 712000
2 西北大学化学与材料科学学院,西安 710069
Activity and Mechanism of Catalytic Degradation of Rhodamine B by Ni(Ⅱ) Complex Derived from Polycarboxylate Ligand
LIU Yang1,*, MA Zhanying1, LI Wuwu1, GUO Naini1, HOU Lei2,*, FAN Xingyu1, WANG Ying’ai1, WANG Yaoyu2
1 School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang 712000, Shaanxi, China
2 College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
下载:  全 文 ( PDF ) ( 6787KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于纺织、印刷等工业规模的迅速扩张,生产过程中产生的染料废水对人类生存环境造成巨大压力。目前,在染料废水修复处理领域,基于SO4·-的高级氧化技术由于其氧化优势备受关注。通常,过一硫酸盐(PMS)可自分解产生SO4·-,然而其生成效率很低,因此,探寻有效的PMS催化剂成为研究热点。本研究以5,5′-二苯醚间苯二甲酸(H4odip)和Ni(NO3)2·6H2O为原料,采用溶剂热法制得一种三维结构配合物Ni4(odip)2-(μ2-OH2)2(H2O)8,该材料水稳定性较好且能够在弱酸弱碱环境下稳定存在。采用X射线单晶和粉末衍射、红外光谱、热重及元素分析对配合物的结构和组成进行了表征。利用紫外-可见分光光度计研究其催化降解罗丹明B的活性与机理,系统探讨了配合物和PMS用量、溶液反应温度和pH对罗丹明B降解性能的影响。与不加催化剂相比,配合物的加入可使罗丹明B的降解速率提高两倍。研究表明,在中性环境中,PMS/配合物催化体系具有更强的降解能力,降解率可达92.3%。活性氧物种(ROS)捕获实验和电子顺磁共振波谱结果表明该催化体系降解罗丹明B的ROS有SO4·-、·OH、1O2和O2·-,且此四种ROS在降解罗丹明B时的贡献作用相近。综合分析实验结果,该配合物在催化PMS用于染料废水修复处理领域可作为一种有效且能循环使用的新型多相催化剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洋
马占营
李午戊
郭乃妮
侯磊
樊星宇
王樱嫒
王尧宇
关键词:  配合物  过一硫酸盐  催化降解  罗丹明B  活性与机理    
Abstract: With the rapid expansion of textile and printing industry scale, the dye wastewater generated in the production process has brought huge pressure to living environment. At present, in the field of remediation and treatment of dye wastewater, advanced oxidation technology based on SO4·- has attracted much attention due to its oxidation advantages. In general, peroxymonosulfate (PMS) can self-decompose to produce SO4·-, but the efficiency is low, so searching for an effective PMS catalyst has become a focus recently. Here a 3D complex Ni4(odip)2-(μ2-OH2)2(H2O)8 was prepared by solvothermal method using 5, 5′-oxydiisophthalic acid (H4odip) and Ni(NO3)2·6H2O, which has good water stability and can exist stably in weak acid and weak alkali environment. To study it’s structure and composition, X-ray single crystal and powder diffraction, infrared spectroscopy, thermogravimetric analysis and elemental analyses are adopted here. The activity and mechanism of catalytic degradation of Rhodamine B were tested by UV-Vis spectrophotometer. At the same time, the effects of the complex and peroxymonosulfate loading, reaction temperature and pH on dye degradation were systematically studied. Compared with no catalyst, the degradation rate of Rhodamine B was increased by two times with the addition of the complex. In the neutral environment, the PMS/complex catalytic system has a stronger degradation ability, and the degradation rate can reach 92.3%. A comprehensive analysis of the active oxygen species (ROS) capture experiment and electron paramagnetic resonance (EPR) test results confirmed that the ROS produced by the PMS/complex system include SO4·-, ·OH, 1O2 and O2·-, and the contribution of the four ROS in the degradation of rhodamine B was similar. Therefore, the complex can be used as an effective and recyclable new heterogeneous catalyst in the field of catalytic PMS for dye wastewater remediation.
Key words:  complex    peroxymonosulfate (PMS)    catalytic degradation    rhodamine B (RhB)    activity and mechanism
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  O614.81+2  
基金资助: 陕西省自然科学基金(2023-JC-QN-0173;2023-YBSF-595);陕西省教育厅科研计划基金(22JK0605);咸阳市重点研发计划基金(L2023-ZDYF-QYCX-030);大学生创新创业训练计划基金(xysfxy2024169);咸阳师范学院研究项目(2023YB23;sjxm202414)
通讯作者:  *刘洋,2011年6月毕业于渭南师范学院化学专业,获得理学学士学位;2014年7月毕业于西北大学材料化学专业,获得理学硕士学位;2020年6月毕业于西北大学无机化学专业,获得理学博士学位。现为咸阳师范学院化学与化工学院讲师,主要从事配位聚合物的合成及应用研究。近年来,在国内外权威期刊发表SCI论文10余篇,申请发明专利2项。主持陕西省自然科学基础研究计划1项,陕西省教育厅专项科研计划项目1项;参与国家自然科学基金面上项目1项。liuyang@xync.edu.cn
侯磊,2002年6月毕业于合肥工业大学化工学院,获得学士学位;2005年6月毕业于汕头大学应用化学专业,获得硕士学位;2009年6月毕业于中山大学无机化学专业,获得博士学位。现为西北大学化学与材料科学学院教授,主要从事领域为发光传感、吸附分离、二氧化碳捕获转化等功能金属有机框架材料的制备研究。近年来,在国际权威期刊发表SCI论文90余篇。主持国家自然科学青年、面上项目基金、中国博士后基金、陕西省科技厅项目基金多项。lhou2009@nwu.edu.cn   
引用本文:    
刘洋, 马占营, 李午戊, 郭乃妮, 侯磊, 樊星宇, 王樱嫒, 王尧宇. 多羧酸镍配合物催化降解罗丹明B的活性与机理[J]. 材料导报, 2024, 38(16): 24030040-6.
LIU Yang, MA Zhanying, LI Wuwu, GUO Naini, HOU Lei, FAN Xingyu, WANG Ying’ai, WANG Yaoyu. Activity and Mechanism of Catalytic Degradation of Rhodamine B by Ni(Ⅱ) Complex Derived from Polycarboxylate Ligand. Materials Reports, 2024, 38(16): 24030040-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24030040  或          http://www.mater-rep.com/CN/Y2024/V38/I16/24030040
1 Sriram G, Bendre A, Mariappan E, et al. Sustainable Materials and Technologies, 2022, 31, e00378.
2 Zhao W W, Wang Y L. Acta Chimica Sinica, 2019, 77(8), 717 (in Chinese).
赵微微, 王毅琳. 化学学报, 2019, 77(8), 717.
3 Liu Y C, Zhu M, Chen M Y, et al. Materials Reports, 2020, 34(7), 7004 (in Chinese).
刘宇程, 祝梦, 陈明燕, 等. 材料导报, 2020, 34(7), 7004.
4 Tambat S N, Sane P K, Suresh S, et al. Advanced Powder Technology, 2018, 29, 2626.
5 Ma Z H, Ren Y X, Wang Z X, et al. Chinese Journal of Inorganic Chemistry, 2023, 39(10), 2009.
6 Wang Y Y, Yan X, Ai T, et al. Materials Reports, 2022, 36(17), 193 (in Chinese).
王渊源, 阎鑫, 艾涛, 等. 材料导报, 2022, 36(17), 193.
7 Yang G, Mo S, Xing B, et al. Environmental Pollution, 2020, 258, 113687.
8 Li X, Jia Y, Zhou M, et al. Journal of Hazardous Materials, 2020, 397, 122764.
9 Sun Y, Xie H, Zhou C, et al. Journal of Hazardous Materials, 2020, 398, 122827.
10 Clothier L N, Gieg L M. Water Research, 2016, 90, 156.
11 Pham T D, Bui V P, Pham T N, et al. Polymers, 2021, 13(10), 1536.
12 Chen Y, Liu H, Hu X, et al. Fibers and Polymers, 2017, 18(7), 1250.
13 You W Q. Degradation of organic dyes by different activation systems of peroxymonosulfate. Master’s Thesis, Southwest University, China, 2022 (in Chinese).
游温侨. 过一硫酸盐的不同活化体系对有机染料污染物的降解研究. 硕士学位论文, 西南大学, 2022.
14 Kohantorabi M, Moussavi G, Giannakis S. Chemical Engineering Journal, 2021, 411, 127957.
15 Qi C, Liu X, Ma J, et al. Chemosphere, 2016, 151, 280.
16 Duan X, Sun H, Wang S. Accounts of Chemical Research, 2018, 51(3), 678.
17 Wacławek S, Lutze H V, Grübel K, et al. Chemical Engineering Journal, 2017, 330, 44.
18 Li X J, Ye Z Y, Xie S H, et al. Acta Chimica Sinica, 2022, 80(9), 1238 (in Chinese).
李小娟, 叶梓瑜, 谢书涵, 等. 化学学报, 2022, 80(9), 1238.
19 Wang J L, Wang S Z. Chemical Engineering Journal, 2018, 334(15), 1502.
20 Ding Y, Pan C, Peng X, et al. Chemical Engineering Journal, 2020, 384, 123378.
21 Guan Y H, Ma J, Ren Y M, et al. Water Research, 2013, 47(14), 5431.
22 Xiao Z Y, Li Y, Fan Lu, et al. Journal of Colloid and Interface Science, 2021, 589, 298.
23 Chi H Y, Wan J Q, Ma Y W, et al. Journal of Hazardous Materials, 2019, 377(5), 163.
24 Zhang W X, Zhang H, Yan X, et al. Journal of Hazardous Materials, 2020, 387(5), 121701.
25 Gua A T, Wang P, Chen K W, et al. Separation and Purification Technology, 2022, 298, 121461.
26 Li J L, Zhu W H, Gao Y, et al. Separation and Purification Technology, 2022, 285, 120362.
27 Rojas S, Horcajada P. Chemical Reviews, 2020, 120(16), 8378.
28 Lv H, Yang Q, Kong Y. Materials Reports, 2023, 37(4), 170 (in Chinese).
鲁浩, 杨强, 孔赟. 材料导报, 2023, 37(4), 170.
29 Yang Y, Fu P, Li X, et al. Inorganic Chemistry Communications, 2020, 122, 108282.
30 Xu L L, Liu W P, Li X F, et al. RSC Advances, 2015, 5, 12248.
31 Wang Y, Li X, Hu X Li, et al. Journal of Solid State Chemistry, 2020, 289, 121443.
32 Xie W, Yuan Y, Wang J J, et al. Dalton Transactions, 2023, 52, 14852.
33 Liu Y, Gao F Q, Ma Z Y, et al. Acta Chimica Sinica, 2024, 82(2), 152 (in Chinese).
刘洋, 高丰琴, 马占营, 等. 化学学报, 2024, 82(2), 152.
34 Luo X S, Bai L M, Xing J J, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 35720.
[1] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[2] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[3] 卓明鹏, 俞燕君, 丁灵奕, 陈伟凡, 廖良生. 稀土发光配合物及其在有机发光二极管中的应用[J]. 材料导报, 2023, 37(3): 21060045-10.
[4] 曹一达, 刘成宝, 陈丰, 钱君超, 许小静, 孟宪荣, 陈志刚. CeO2/BiOI/g-C3N4三相复合材料的制备及可见光催化降解RhB性能研究[J]. 材料导报, 2023, 37(3): 21070275-7.
[5] 王宗乾, 申佳锟, 李禹, 李长龙, 王鹏. g-C3N4/MXene/Ag3PO4异质结催化剂构建及催化性能[J]. 材料导报, 2023, 37(22): 22030277-7.
[6] 吴雷, 吴红艳, 邱丝雯, 周军, 张秋利, 田玮. 有机污染土壤微波修复技术中吸波剂的研究进展[J]. 材料导报, 2023, 37(19): 22020006-9.
[7] 陈丹丹, 李燕, 王爱国. 尖晶石型铁氧体异质结的构建及用于有机污染物光催化降解的研究进展[J]. 材料导报, 2023, 37(16): 21110278-10.
[8] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[9] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[10] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究(英文)[J]. 材料导报, 2022, 36(24): 21030140-8.
[11] 蒋柱武, 史安童, 沈俊宏. Cu-ZnO/g-C3N4复合材料可见光催化降解环丙沙星效率及机理研究[J]. 材料导报, 2022, 36(20): 22030040-7.
[12] 唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
[13] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[14] 赵可一, 曾和平. 镀铜空心玻璃微珠的光催化降解性能[J]. 材料导报, 2020, 34(Z2): 132-137.
[15] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed