Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22060232-8    https://doi.org/10.11896/cldb.22060232
  无机非金属及其复合材料 |
纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究
杨志强1,2, 王振1,2, 黄法礼1,2, 易忠来1,2, 蒋金洋3,4,*
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 高速铁路轨道系统全国重点实验室,北京 100081
3 东南大学材料科学与工程学院,南京 211189
4 东南大学江苏省土木工程材料重点实验室,南京 211189
Improving the Service Life of Bridge Concrete Structure of High-speed Railway Exposed to Marine Environment by Adding Nano Alumina-oxide
YANG Zhiqiang1,2 , WANG Zhen1,2, HUANG Fali1,2, YI Zhonglai1,2, JIANG Jinyang3,4,*
1 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China
2 State Key Laboratory for Track System of High-speed Railway, Beijing 100081, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
4 Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 5625KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 氯离子传输并诱导内部钢筋锈蚀是海洋环境高速铁路桥梁混凝土结构耐久性失效的主要原因之一,增大混凝土氯离子传输阻力是提升混凝土结构服役寿命的根本途径。纳米技术与纳米材料的发展为混凝土材料高性能化提供了新的可能。本工作研究了纳米氧化铝(NA)对砂浆氯离子电迁移系数(DRCM)与自然扩散系数的影响,基于氯离子等温吸附曲线,建立了考虑氯离子结合参数的氯盐传输模型,分析了NA对氯盐侵蚀环境下混凝土结构服役寿命的影响。结果表明:适宜掺量的NA可降低砂浆氯离子传输性能;承台桩基础混凝土钢筋保护层厚度为60 mm时,在C45混凝土中掺入2%(质量分数)NA后,仅考虑氯离子侵蚀时混凝土预期服役寿命由68年提升至107年。NA为提升海洋环境下高速铁路混凝土结构服役寿命提供了新的技术途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨志强
王振
黄法礼
易忠来
蒋金洋
关键词:  高速铁路  混凝土  氯离子  纳米氧化铝  服役寿命    
Abstract: Chloride-induced steel corrosion is one of the main deterioration mechanisms that lead to the durability issue of bridge concrete structures of high-speed railway exposed to marine environment. Improving the chloride resistance of concrete is the fundamental way to increase the service life of concrete structure. The development of nano technology and nano material provides a novel research direction towards higher performance concrete. In this work, the influence of nano alumina oxide (NA) on the chloride migration coefficient (DRCM) and natural diffusion properties of mortar were firstly investigated. Based on the chloride binding isotherms, the chloride diffusion model with binding parameters of concrete were established. Meanwhile, the influence of NA on service life of concrete structures under chloride environment was simulated. The results show that the chloride resistance of mortar can be improved with an appropriate content of NA. With a protective layer of 60 mm and an addition of 2wt%NA, the service life of bearing platform C45 concrete is increased from 68 years to 107 years. The addition of NA provides a novel technology for prolonging the service life of concrete structures of high-speed railway exposed to marine environment.
Key words:  high-speed railway    concrete    chloride    nano alumina-oxide    service life
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51925903;U1934206;52178260)
通讯作者:  蒋金洋,东南大学首席教授、博士研究生导师,国家杰出青年科学基金获得者,万人计划科技创新领军人才,长期专注于严酷环境下高性能混凝土绿色化设计及制备、混凝土性能跨尺度高效设计等领域研究。主持国家重点研发计划课题、国家自然科学基金等科研项目20余项,发表SCI和EI收录论文120余篇,授权国家发明专利20余项,编制国家/行业/团体标准5部。获国家科技进步二等奖1项、省部级一等奖5项、教育部科技进步二等奖2项。jiangjinyang16@163.com   
作者简介:  杨志强,2013年6月、2016年6月于重庆大学获得工学学士学位和硕士学位,2021年9月于东南大学获得工学博士学位。现为中国铁道科学研究院集团有限公司助理研究员,主要研究领域为高速铁路高性能混凝土、混凝土结构耐久性,发表相关SCI/EI论文10余篇。
引用本文:    
杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
YANG Zhiqiang, WANG Zhen, HUANG Fali, YI Zhonglai, JIANG Jinyang. Improving the Service Life of Bridge Concrete Structure of High-speed Railway Exposed to Marine Environment by Adding Nano Alumina-oxide. Materials Reports, 2024, 38(7): 22060232-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060232  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22060232
1 Yuan Q, Shi C J, De Schutter G, et al. Construction and Building Mate-rials, 2009, 23(1), 1.
2 Karolina Hájková, Vít Šmilauer, Libor Jendele, et al. Engineering Structures, 2018, 174, 768.
3 Gao Y L, Zhou S Q, Ma B G. Journal of the China Railway Society, 2006, 28(3), 121(in Chinese).
高英力, 周士琼, 马保国. 铁道学报, 2006, 28(3), 121.
4 Li H J, Yi Z L, Xie Y J. Materials Reports, 2012, 26(3), 120(in Chinese).
李化建, 易忠来, 谢永江. 材料导报, 2012, 26(3), 120.
5 Ai Z Y, Jiang J Y, Sun W, et al. Cement and Concrete Composites, 2018, 92, 178.
6 Wang F J, Zhang Z F, Wu S P, et al. Materials, 2019, 12(12), 1901.
7 Lopez-Calvo H Z, Montes-García P, Jiménez-Quero V G, et al. Cement and Concrete Composites 2018, 88, 200.
8 Wang D Z, Yang H, Zeng J H, et al. Railway Standard Design, 2019, 63(8), 67 (in Chinese).
王德志, 杨恒, 曾甲华, 等. 铁道标准设计, 2019, 63(8), 67.
9 Wang S N, Li K F, Fan Z H, et al. Port & Waterway Engineering, 2015(3), 78(in Chinese).
王胜年, 李克非, 范志宏. 水运工程, 2015(3), 78.
10 Li H J, Xie Y J, Yi Z L, et al. Journal of the China Railway Society, 2012, 34(9), 111(in Chinese).
李化建, 谢永江, 易忠来, 等. 铁道学报, 2012, 34(9), 111.
11 Shi H S, Fang Z F. Journal of the Chinese Ceramic Society, 2004, 32(1), 95(in Chinese).
施惠生, 方泽锋. 硅酸盐学报, 2004, 32(1), 95.
12 Chen Y, Zou C, Song B S, et al. Journal of Building Materials, 2014, 17(3), 481(in Chinese).
陈瑜, 邹成, 宋宝顺, 等. 建筑材料学报, 2014, 17(3), 481.
13 Qian X Q, Qian K L, Meng T, et al. Rare Metal Materials and Enginee-ring, 2008, 37(z2), 709(in Chinese).
钱晓倩, 钱匡亮, 孟涛, 等. 稀有金属材料与工程, 2008, 37(z2), 709.
14 Safiuddin M, Gonzalez M, Cao J, et al. International Journal of Pavement Engineering, 2014, 15 (10), 940.
15 Norhasri M M, Hamidah M, Fadzil A M. Construction and Building Materials, 2017, 133, 91.
16 Nazari A, Riahi S, Riahi S, et al. Journal of American Science, 2010, 6(4), 98.
17 Busca G. Catalysis Today, 2014, 226, 2.
18 Behfarnia K, Salemi N. Construction and Building Materials, 2013, 48, 580.
19 Wu H T, Torabian Isfahani F, Jin W L, et al. Construction and Building Materials, 2016, 126, 857.
20 Farzadnia N, Abang Ali A A, Demirboga R. Cement and Concrete Research, 2013, 54, 43.
21 Yang Z Q, Gao Y, Mu S, et al. Construction and Building Materials, 2019, 195, 415.
22 Yang Z Q, Sui S Y, Wang L G, et al. Construction and Building Materials, 2020, 232, 117219.
23 Zhang Y, Yang Z Q, Jiang J Y. Construction and Building Materials, 2022, 321, 126179.
24 Du H J, Pang S D. Cement and Concrete Research, 2015, 76, 10.
25 Tang L P. In:1st RILEM workshop on Chloride Penetration into Concrete. Cachan, France, 1995, pp. 126.
26 Yi C, Ma H Q, Zhu H G, et al. Construction and Building Materials, 2018, 167, 649.
27 Shi C J, Hu X, Wang X G, et al. Journal of Materials in Civil Enginee-ring, 2016, 29(1), 04016183.
28 Balonis M, Glasser F P. Cement and Concrete Research, 2009, 39(9), 733.
29 Qiao C Y, Suraneni P, Nathalene Wei Ying T, et al. Cement and Concrete Composites, 2019, 97, 43.
30 He F, Shi C, Chen C, et al. Materials Research Innovations, 2015, 19, 348.
31 Zhu Z G, Xu W X, Chen H S, et al. Composites Part B: Engineering, 2020, 185, 107795.
32 Castellote M, Andrade C, Alonso C. Cement and Concrete Research, 1999, 29(11), 1799.
33 Angst U M. Cement and Concrete Research, 2019, 115, 559.
34 Lollini F, Carsana M, Gastaldi M, et al. Construction and Building Materials, 2015, 79, 245.
35 Mijnsbergen J P G. Duracrete, general duidelines for durability design and redesign, Gouda, The Netherlands, 2000.
36 Li Q W, Li K F, Zhou X G, et al. Structure Safety, 2015, 53, 1.
37 Angst U M, Elsener B. Science advances, 2017, 3(8), e1700751.
38 Angst U, Wagner M, Elsener B, et al. Method to determine the critical chloride content of existing reinforced concrete structures, Swiss Fe-deral Roads Office, Berne, Switzerland, 2016.
39 Zimmermann L. Korrosionsinitiierender chloridgehalt von stahl in Beton. Ph. D. Thesis, ETH Zurich, Switzerland, 2000.
40 Jin Z Q, Zhao T J, Hou B R, et al. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(6), 86(in Chinese).
金祖权, 赵铁军, 侯保荣. 土木建筑与环境工程, 2009, 31(6), 86.
41 Zhao Z, Teng H W, Xu A M. Journal of Highway and Transportation Research and Development, 2009, 26(9), 59(in Chinese).
赵卓, 滕海文, 徐爱敏. 公路交通科技, 2009, 26(9), 59.
42 Hamidane H M, Chateauneuf A, Messabhia A, et al. Structural Safety, 2020, 86, 101976.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[3] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[4] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[5] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[6] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[7] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[8] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[9] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[10] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[11] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[12] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[13] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[14] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[15] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[1] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[2] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[3] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[4] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[5] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[6] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
[7] WANG Yunpeng, HU Jiawei, XU Xiaoyun, LIU Daofeng, JIANG Hongzhang, WANG Xiaoyong, YAN Yinbiao. Research Progress of Effect of Multi-directional Forging on Microstructure and Properties of Aluminum Alloys[J]. Materials Reports, 2019, 33(13): 2266 -2271 .
[8] LI Hongxia, LI Baowei, DENG Leibo, XU Pengfei, LIU Zhongxing. Effects of Microwave Heat Treatment Temperature on Crystallization and Properties of Tailing-based Glass-Ceramics[J]. Materials Reports, 2019, 33(20): 3401 -3407 .
[9] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[10] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed