Improving the Service Life of Bridge Concrete Structure of High-speed Railway Exposed to Marine Environment by Adding Nano Alumina-oxide
YANG Zhiqiang1,2 , WANG Zhen1,2, HUANG Fali1,2, YI Zhonglai1,2, JIANG Jinyang3,4,*
1 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China 2 State Key Laboratory for Track System of High-speed Railway, Beijing 100081, China 3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China 4 Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
Abstract: Chloride-induced steel corrosion is one of the main deterioration mechanisms that lead to the durability issue of bridge concrete structures of high-speed railway exposed to marine environment. Improving the chloride resistance of concrete is the fundamental way to increase the service life of concrete structure. The development of nano technology and nano material provides a novel research direction towards higher performance concrete. In this work, the influence of nano alumina oxide (NA) on the chloride migration coefficient (DRCM) and natural diffusion properties of mortar were firstly investigated. Based on the chloride binding isotherms, the chloride diffusion model with binding parameters of concrete were established. Meanwhile, the influence of NA on service life of concrete structures under chloride environment was simulated. The results show that the chloride resistance of mortar can be improved with an appropriate content of NA. With a protective layer of 60 mm and an addition of 2wt%NA, the service life of bearing platform C45 concrete is increased from 68 years to 107 years. The addition of NA provides a novel technology for prolonging the service life of concrete structures of high-speed railway exposed to marine environment.
杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
YANG Zhiqiang, WANG Zhen, HUANG Fali, YI Zhonglai, JIANG Jinyang. Improving the Service Life of Bridge Concrete Structure of High-speed Railway Exposed to Marine Environment by Adding Nano Alumina-oxide. Materials Reports, 2024, 38(7): 22060232-8.
1 Yuan Q, Shi C J, De Schutter G, et al. Construction and Building Mate-rials, 2009, 23(1), 1. 2 Karolina Hájková, Vít Šmilauer, Libor Jendele, et al. Engineering Structures, 2018, 174, 768. 3 Gao Y L, Zhou S Q, Ma B G. Journal of the China Railway Society, 2006, 28(3), 121(in Chinese). 高英力, 周士琼, 马保国. 铁道学报, 2006, 28(3), 121. 4 Li H J, Yi Z L, Xie Y J. Materials Reports, 2012, 26(3), 120(in Chinese). 李化建, 易忠来, 谢永江. 材料导报, 2012, 26(3), 120. 5 Ai Z Y, Jiang J Y, Sun W, et al. Cement and Concrete Composites, 2018, 92, 178. 6 Wang F J, Zhang Z F, Wu S P, et al. Materials, 2019, 12(12), 1901. 7 Lopez-Calvo H Z, Montes-García P, Jiménez-Quero V G, et al. Cement and Concrete Composites 2018, 88, 200. 8 Wang D Z, Yang H, Zeng J H, et al. Railway Standard Design, 2019, 63(8), 67 (in Chinese). 王德志, 杨恒, 曾甲华, 等. 铁道标准设计, 2019, 63(8), 67. 9 Wang S N, Li K F, Fan Z H, et al. Port & Waterway Engineering, 2015(3), 78(in Chinese). 王胜年, 李克非, 范志宏. 水运工程, 2015(3), 78. 10 Li H J, Xie Y J, Yi Z L, et al. Journal of the China Railway Society, 2012, 34(9), 111(in Chinese). 李化建, 谢永江, 易忠来, 等. 铁道学报, 2012, 34(9), 111. 11 Shi H S, Fang Z F. Journal of the Chinese Ceramic Society, 2004, 32(1), 95(in Chinese). 施惠生, 方泽锋. 硅酸盐学报, 2004, 32(1), 95. 12 Chen Y, Zou C, Song B S, et al. Journal of Building Materials, 2014, 17(3), 481(in Chinese). 陈瑜, 邹成, 宋宝顺, 等. 建筑材料学报, 2014, 17(3), 481. 13 Qian X Q, Qian K L, Meng T, et al. Rare Metal Materials and Enginee-ring, 2008, 37(z2), 709(in Chinese). 钱晓倩, 钱匡亮, 孟涛, 等. 稀有金属材料与工程, 2008, 37(z2), 709. 14 Safiuddin M, Gonzalez M, Cao J, et al. International Journal of Pavement Engineering, 2014, 15 (10), 940. 15 Norhasri M M, Hamidah M, Fadzil A M. Construction and Building Materials, 2017, 133, 91. 16 Nazari A, Riahi S, Riahi S, et al. Journal of American Science, 2010, 6(4), 98. 17 Busca G. Catalysis Today, 2014, 226, 2. 18 Behfarnia K, Salemi N. Construction and Building Materials, 2013, 48, 580. 19 Wu H T, Torabian Isfahani F, Jin W L, et al. Construction and Building Materials, 2016, 126, 857. 20 Farzadnia N, Abang Ali A A, Demirboga R. Cement and Concrete Research, 2013, 54, 43. 21 Yang Z Q, Gao Y, Mu S, et al. Construction and Building Materials, 2019, 195, 415. 22 Yang Z Q, Sui S Y, Wang L G, et al. Construction and Building Materials, 2020, 232, 117219. 23 Zhang Y, Yang Z Q, Jiang J Y. Construction and Building Materials, 2022, 321, 126179. 24 Du H J, Pang S D. Cement and Concrete Research, 2015, 76, 10. 25 Tang L P. In:1st RILEM workshop on Chloride Penetration into Concrete. Cachan, France, 1995, pp. 126. 26 Yi C, Ma H Q, Zhu H G, et al. Construction and Building Materials, 2018, 167, 649. 27 Shi C J, Hu X, Wang X G, et al. Journal of Materials in Civil Enginee-ring, 2016, 29(1), 04016183. 28 Balonis M, Glasser F P. Cement and Concrete Research, 2009, 39(9), 733. 29 Qiao C Y, Suraneni P, Nathalene Wei Ying T, et al. Cement and Concrete Composites, 2019, 97, 43. 30 He F, Shi C, Chen C, et al. Materials Research Innovations, 2015, 19, 348. 31 Zhu Z G, Xu W X, Chen H S, et al. Composites Part B: Engineering, 2020, 185, 107795. 32 Castellote M, Andrade C, Alonso C. Cement and Concrete Research, 1999, 29(11), 1799. 33 Angst U M. Cement and Concrete Research, 2019, 115, 559. 34 Lollini F, Carsana M, Gastaldi M, et al. Construction and Building Materials, 2015, 79, 245. 35 Mijnsbergen J P G. Duracrete, general duidelines for durability design and redesign, Gouda, The Netherlands, 2000. 36 Li Q W, Li K F, Zhou X G, et al. Structure Safety, 2015, 53, 1. 37 Angst U M, Elsener B. Science advances, 2017, 3(8), e1700751. 38 Angst U, Wagner M, Elsener B, et al. Method to determine the critical chloride content of existing reinforced concrete structures, Swiss Fe-deral Roads Office, Berne, Switzerland, 2016. 39 Zimmermann L. Korrosionsinitiierender chloridgehalt von stahl in Beton. Ph. D. Thesis, ETH Zurich, Switzerland, 2000. 40 Jin Z Q, Zhao T J, Hou B R, et al. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(6), 86(in Chinese). 金祖权, 赵铁军, 侯保荣. 土木建筑与环境工程, 2009, 31(6), 86. 41 Zhao Z, Teng H W, Xu A M. Journal of Highway and Transportation Research and Development, 2009, 26(9), 59(in Chinese). 赵卓, 滕海文, 徐爱敏. 公路交通科技, 2009, 26(9), 59. 42 Hamidane H M, Chateauneuf A, Messabhia A, et al. Structural Safety, 2020, 86, 101976.