Please wait a minute...
材料导报  2024, Vol. 38 Issue (7): 22060232-8    https://doi.org/10.11896/cldb.22060232
  无机非金属及其复合材料 |
纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究
杨志强1,2, 王振1,2, 黄法礼1,2, 易忠来1,2, 蒋金洋3,4,*
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 高速铁路轨道系统全国重点实验室,北京 100081
3 东南大学材料科学与工程学院,南京 211189
4 东南大学江苏省土木工程材料重点实验室,南京 211189
Improving the Service Life of Bridge Concrete Structure of High-speed Railway Exposed to Marine Environment by Adding Nano Alumina-oxide
YANG Zhiqiang1,2 , WANG Zhen1,2, HUANG Fali1,2, YI Zhonglai1,2, JIANG Jinyang3,4,*
1 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China
2 State Key Laboratory for Track System of High-speed Railway, Beijing 100081, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
4 Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 5625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氯离子传输并诱导内部钢筋锈蚀是海洋环境高速铁路桥梁混凝土结构耐久性失效的主要原因之一,增大混凝土氯离子传输阻力是提升混凝土结构服役寿命的根本途径。纳米技术与纳米材料的发展为混凝土材料高性能化提供了新的可能。本工作研究了纳米氧化铝(NA)对砂浆氯离子电迁移系数(DRCM)与自然扩散系数的影响,基于氯离子等温吸附曲线,建立了考虑氯离子结合参数的氯盐传输模型,分析了NA对氯盐侵蚀环境下混凝土结构服役寿命的影响。结果表明:适宜掺量的NA可降低砂浆氯离子传输性能;承台桩基础混凝土钢筋保护层厚度为60 mm时,在C45混凝土中掺入2%(质量分数)NA后,仅考虑氯离子侵蚀时混凝土预期服役寿命由68年提升至107年。NA为提升海洋环境下高速铁路混凝土结构服役寿命提供了新的技术途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨志强
王振
黄法礼
易忠来
蒋金洋
关键词:  高速铁路  混凝土  氯离子  纳米氧化铝  服役寿命    
Abstract: Chloride-induced steel corrosion is one of the main deterioration mechanisms that lead to the durability issue of bridge concrete structures of high-speed railway exposed to marine environment. Improving the chloride resistance of concrete is the fundamental way to increase the service life of concrete structure. The development of nano technology and nano material provides a novel research direction towards higher performance concrete. In this work, the influence of nano alumina oxide (NA) on the chloride migration coefficient (DRCM) and natural diffusion properties of mortar were firstly investigated. Based on the chloride binding isotherms, the chloride diffusion model with binding parameters of concrete were established. Meanwhile, the influence of NA on service life of concrete structures under chloride environment was simulated. The results show that the chloride resistance of mortar can be improved with an appropriate content of NA. With a protective layer of 60 mm and an addition of 2wt%NA, the service life of bearing platform C45 concrete is increased from 68 years to 107 years. The addition of NA provides a novel technology for prolonging the service life of concrete structures of high-speed railway exposed to marine environment.
Key words:  high-speed railway    concrete    chloride    nano alumina-oxide    service life
出版日期:  2024-04-10      发布日期:  2024-04-11
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51925903;U1934206;52178260)
通讯作者:  蒋金洋,东南大学首席教授、博士研究生导师,国家杰出青年科学基金获得者,万人计划科技创新领军人才,长期专注于严酷环境下高性能混凝土绿色化设计及制备、混凝土性能跨尺度高效设计等领域研究。主持国家重点研发计划课题、国家自然科学基金等科研项目20余项,发表SCI和EI收录论文120余篇,授权国家发明专利20余项,编制国家/行业/团体标准5部。获国家科技进步二等奖1项、省部级一等奖5项、教育部科技进步二等奖2项。jiangjinyang16@163.com   
作者简介:  杨志强,2013年6月、2016年6月于重庆大学获得工学学士学位和硕士学位,2021年9月于东南大学获得工学博士学位。现为中国铁道科学研究院集团有限公司助理研究员,主要研究领域为高速铁路高性能混凝土、混凝土结构耐久性,发表相关SCI/EI论文10余篇。
引用本文:    
杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
YANG Zhiqiang, WANG Zhen, HUANG Fali, YI Zhonglai, JIANG Jinyang. Improving the Service Life of Bridge Concrete Structure of High-speed Railway Exposed to Marine Environment by Adding Nano Alumina-oxide. Materials Reports, 2024, 38(7): 22060232-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060232  或          https://www.mater-rep.com/CN/Y2024/V38/I7/22060232
1 Yuan Q, Shi C J, De Schutter G, et al. Construction and Building Mate-rials, 2009, 23(1), 1.
2 Karolina Hájková, Vít Šmilauer, Libor Jendele, et al. Engineering Structures, 2018, 174, 768.
3 Gao Y L, Zhou S Q, Ma B G. Journal of the China Railway Society, 2006, 28(3), 121(in Chinese).
高英力, 周士琼, 马保国. 铁道学报, 2006, 28(3), 121.
4 Li H J, Yi Z L, Xie Y J. Materials Reports, 2012, 26(3), 120(in Chinese).
李化建, 易忠来, 谢永江. 材料导报, 2012, 26(3), 120.
5 Ai Z Y, Jiang J Y, Sun W, et al. Cement and Concrete Composites, 2018, 92, 178.
6 Wang F J, Zhang Z F, Wu S P, et al. Materials, 2019, 12(12), 1901.
7 Lopez-Calvo H Z, Montes-García P, Jiménez-Quero V G, et al. Cement and Concrete Composites 2018, 88, 200.
8 Wang D Z, Yang H, Zeng J H, et al. Railway Standard Design, 2019, 63(8), 67 (in Chinese).
王德志, 杨恒, 曾甲华, 等. 铁道标准设计, 2019, 63(8), 67.
9 Wang S N, Li K F, Fan Z H, et al. Port & Waterway Engineering, 2015(3), 78(in Chinese).
王胜年, 李克非, 范志宏. 水运工程, 2015(3), 78.
10 Li H J, Xie Y J, Yi Z L, et al. Journal of the China Railway Society, 2012, 34(9), 111(in Chinese).
李化建, 谢永江, 易忠来, 等. 铁道学报, 2012, 34(9), 111.
11 Shi H S, Fang Z F. Journal of the Chinese Ceramic Society, 2004, 32(1), 95(in Chinese).
施惠生, 方泽锋. 硅酸盐学报, 2004, 32(1), 95.
12 Chen Y, Zou C, Song B S, et al. Journal of Building Materials, 2014, 17(3), 481(in Chinese).
陈瑜, 邹成, 宋宝顺, 等. 建筑材料学报, 2014, 17(3), 481.
13 Qian X Q, Qian K L, Meng T, et al. Rare Metal Materials and Enginee-ring, 2008, 37(z2), 709(in Chinese).
钱晓倩, 钱匡亮, 孟涛, 等. 稀有金属材料与工程, 2008, 37(z2), 709.
14 Safiuddin M, Gonzalez M, Cao J, et al. International Journal of Pavement Engineering, 2014, 15 (10), 940.
15 Norhasri M M, Hamidah M, Fadzil A M. Construction and Building Materials, 2017, 133, 91.
16 Nazari A, Riahi S, Riahi S, et al. Journal of American Science, 2010, 6(4), 98.
17 Busca G. Catalysis Today, 2014, 226, 2.
18 Behfarnia K, Salemi N. Construction and Building Materials, 2013, 48, 580.
19 Wu H T, Torabian Isfahani F, Jin W L, et al. Construction and Building Materials, 2016, 126, 857.
20 Farzadnia N, Abang Ali A A, Demirboga R. Cement and Concrete Research, 2013, 54, 43.
21 Yang Z Q, Gao Y, Mu S, et al. Construction and Building Materials, 2019, 195, 415.
22 Yang Z Q, Sui S Y, Wang L G, et al. Construction and Building Materials, 2020, 232, 117219.
23 Zhang Y, Yang Z Q, Jiang J Y. Construction and Building Materials, 2022, 321, 126179.
24 Du H J, Pang S D. Cement and Concrete Research, 2015, 76, 10.
25 Tang L P. In:1st RILEM workshop on Chloride Penetration into Concrete. Cachan, France, 1995, pp. 126.
26 Yi C, Ma H Q, Zhu H G, et al. Construction and Building Materials, 2018, 167, 649.
27 Shi C J, Hu X, Wang X G, et al. Journal of Materials in Civil Enginee-ring, 2016, 29(1), 04016183.
28 Balonis M, Glasser F P. Cement and Concrete Research, 2009, 39(9), 733.
29 Qiao C Y, Suraneni P, Nathalene Wei Ying T, et al. Cement and Concrete Composites, 2019, 97, 43.
30 He F, Shi C, Chen C, et al. Materials Research Innovations, 2015, 19, 348.
31 Zhu Z G, Xu W X, Chen H S, et al. Composites Part B: Engineering, 2020, 185, 107795.
32 Castellote M, Andrade C, Alonso C. Cement and Concrete Research, 1999, 29(11), 1799.
33 Angst U M. Cement and Concrete Research, 2019, 115, 559.
34 Lollini F, Carsana M, Gastaldi M, et al. Construction and Building Materials, 2015, 79, 245.
35 Mijnsbergen J P G. Duracrete, general duidelines for durability design and redesign, Gouda, The Netherlands, 2000.
36 Li Q W, Li K F, Zhou X G, et al. Structure Safety, 2015, 53, 1.
37 Angst U M, Elsener B. Science advances, 2017, 3(8), e1700751.
38 Angst U, Wagner M, Elsener B, et al. Method to determine the critical chloride content of existing reinforced concrete structures, Swiss Fe-deral Roads Office, Berne, Switzerland, 2016.
39 Zimmermann L. Korrosionsinitiierender chloridgehalt von stahl in Beton. Ph. D. Thesis, ETH Zurich, Switzerland, 2000.
40 Jin Z Q, Zhao T J, Hou B R, et al. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(6), 86(in Chinese).
金祖权, 赵铁军, 侯保荣. 土木建筑与环境工程, 2009, 31(6), 86.
41 Zhao Z, Teng H W, Xu A M. Journal of Highway and Transportation Research and Development, 2009, 26(9), 59(in Chinese).
赵卓, 滕海文, 徐爱敏. 公路交通科技, 2009, 26(9), 59.
42 Hamidane H M, Chateauneuf A, Messabhia A, et al. Structural Safety, 2020, 86, 101976.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[3] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[4] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[5] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[6] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[7] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[8] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[9] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[10] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[11] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[12] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[13] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[14] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[15] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed