Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1213-1217    https://doi.org/10.11896/j.issn.1005-023X.2018.08.002
  材料研究 |
水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能
林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬
上海工程技术大学材料工程学院,上海 201620
Enhanced Visible-light Photocatalytic Activity of Hydrothermally Synthesized MoS2/Graphene/N-TiO2 Composites
LIN Xiaojing, SUN Mingxuan, HU Mengyuan, YAO Yuan, WANG Wentao
School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620
下载:  全 文 ( PDF ) ( 2939KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氧化石墨烯(GO)、钼酸、硫脲和TiN为原料,成功制备了MoS2/石墨烯/N-TiO2(MGNT)复合材料。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、X射线光电子能谱(XPS)及紫外-可见漫反射光谱(UV-Vis DRS)等手段测试分析了样品的物相组成、形貌、成分和光吸收性能。紫外-可见漫反射测试结果表明,MoS2、石墨烯共同修饰及氮掺杂使得TiO2的吸收带边发生红移,且其可见光吸收性能明显提高。可见光照射下降解亚甲基蓝溶液的实验结果表明,MoS2/石墨烯共同修饰的氮掺杂TiO2的光催化降解性能分别是氮掺杂TiO2(NT)和石墨烯修饰氮掺杂TiO2(GNT)的1.82倍和1.59倍,其吸附性分别为氮掺杂TiO2、石墨烯修饰氮掺杂TiO2的11.14倍和4.77倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林小靖
孙明轩
胡梦媛
姚远
王文韬
关键词:  二硫化钼  石墨烯  TiO2  协同效应  可见光催化    
Abstract: MoS2/graphene/N-TiO2 composites (MGNT) were prepared using GO, H2MoO4, (NH2)2CS, and TiN as the raw materials. The phase composition, morphology, chemical states of elements, and optical absorption performance were characte-rized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), respectively. An obvious red shift of absorption edge and enhanced intensity were observed for MGNT compared with N-TiO2(NT) and graphene/N-TiO2(GNT). The photocatalytic performance was evaluated via the photodegradation of methylene blue (MB) under visible light irradiation. The results showed that the photocatalytic performance of MGNT was 1.82 and 1.59 times of NT and GNT, respectively. In addition, the absorptivity of MGNT was 11.14 and 4.77 times of NT and GNT.
Key words:  MoS2    graphene    TiO2    synergetic effect    visible-light photocatalysis
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  O649.4  
基金资助: 上海市教育委员会科研创新项目(15ZZ092);上海市青年教师培养资助计划(ZZgcd14010);上海工程技术大学科研启动资助项目(2014-22);2016年国家级大学生创新训练项目(201610856017)
通讯作者:  孙明轩:通信作者,男,1983年生,博士,副教授,主要研究方向为纳米功能材料的制备、修饰及光电和光催化性能 E-mail:mingxuansun@sues.edu.cn;smxalan@163.com   
作者简介:  林小靖:女,1994年生,硕士研究生,主要研究方向为纳米功能材料的制备及光催化性能
引用本文:    
林小靖, 孙明轩, 胡梦媛, 姚远, 王文韬. 水热合成的MoS2/石墨烯/N-TiO2复合材料的可见光催化性能[J]. 《材料导报》期刊社, 2018, 32(8): 1213-1217.
LIN Xiaojing, SUN Mingxuan, HU Mengyuan, YAO Yuan, WANG Wentao. Enhanced Visible-light Photocatalytic Activity of Hydrothermally Synthesized MoS2/Graphene/N-TiO2 Composites. Materials Reports, 2018, 32(8): 1213-1217.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.002  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1213
1 Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37.
2 Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results[J].Chemical Reviews,1995,95:735.
3 Fujishima A, Zhang X, Tryk D. TiO2 photocatalysis and related surface phenomena[J].Surface Science Reports,2008,63:515.
4 Li J L, Xiong L. The research progress of grapherne synthesis me-thods[J].Journal of Applied Biomaterials & Functional Materials,2012,43(23):3185.
5 William S, Hummers J, Richard E, et al. Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
6 Sun M X, Ma X Q, Chen X, et al. A nanocomposite of carbon quantum dots and TiO2 nanotube arrays: enhancing photoelectrochemical and photocatalytic properties[J].RSC Advances,2014,4:1120.
7 Han W J, Ren L, Gong L J, et al. Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J].ACS Sustainable Chemistry & Engineering,2014,2:741.
8 Ho W K, Yu J C, Lin J, et al.Preparation and photocatalytic beha-vior of MoS2 and WS2 nanocluster sensitized TiO2[J].Langmuir,2004,20:5865.
9 Han W J, Zang C, Huang Z Y, et al. Enhanced photocatalytic acti-vities of three-dimensional graphene-based aerogel embedding TiO2 nanoparticles and loading MoS2 nanosheets as co-catalyst[J].International Journal of Hydrogen Energy,2014,39:19502.
10 Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles[J].Journal of the American Chemical Society,2012,134:6575.
11 Luo Z, Jiang H, Li D, et al. Improved photocatalytic activity and mechanism of Cu2O/N-TiO2 prepared by a two-step method[J].RSC Advances,2014,4:17797.
12 Sun M X, Fang Y L, Wang Ying, et al. Synthesis of Cu2O/graphene/rutile TiO2 nanorod ternary composites with enhanced photocatalytic activity[J].Journal of Alloys and Compounds,2015,650:520.
13 Wang Y, Sun M X, Fang Y L, et al. Ag2S and MoS2 as dual, co-catalysts for enhanced photocatalytic degradation of organic pollutions over CdS[J].Journal of Materials Science,2016,51:779.
14 Sun M X , Fang Y L, Sun S F, et al. Surface co-modification of TiO2 with N doping and Ag loading for enhanced visible-light photoactivity[J].RSC Advances,2016,6:12272.
15 Sun S F, Sun M X, Fang Y L, et al. One-step in situ calcination synthesis of g-C3N4/N-TiO2 hybrids with enhanced photoactivity[J].RSC Advances,2016,6:13063.
16 Fang Y L, Sun M X, Wang Y, et al. Cu2O decorated carbon-incorporated TiO2 microspheres with enhanced visible light photocatalytic activity[J].Materials Research Bulletin,2016,74:265.
17 Sun M X, Wang Y, Fang Y L, et al. Construction of MoS2/CdS/TiO2 ternary composites with enhanced photocatalytic activity and stability[J].Journal of Alloys and Compounds,2016,684:335.
18 Sun S F, Sun M X, Kong Y Y, et al. MoS2 and graphene as dual, cocatalysts for enhanced visible light photocatalytic activity of Fe2O3[J].Journal of Sol-Gel Science and Technology,2016,80:719.
19 Sun M X, Fang Y L, Kong Y Y, et al. Direct in situ synthesis of Fe2O3-codoped N-doped TiO2 nanoparticles with enhanced photoca-talytic and photo-electrochemical properties[J].Journal of Alloys and Compounds,2017,705:89.
20 Sun M X, Li W B, Sun S F, et al. One-step in situ synthesis of graphene-TiO2 nanorod hybrid composites with enhanced photocatalytic activity[J].Materials Research Bulletin,2015,61:280
21 Fang Y L, Sun M X, Wang Y, et al. N-TiO2 nanoparticles prepared by calcining TiN: Phase composition and optical absorption perfor-mance[J].Materials Review B:Research,2016,30(4):24(in Chinese).
方亚林,孙明轩,王莹,等.煅烧TiN制备N掺杂TiO2及其物相和光吸收性能的研究[J].材料导报:研究篇,2016,30(4):24.
22 Lin X J, Sun M X, Hu M Y, et al. Preparation and photocatalytic activity of graphene modified N-TiO2 nanomaterials[J].Materials Review B:Research,2016,30(9):16(in Chinese).
林小靖,孙明轩,胡梦媛,等.石墨烯修饰氮掺杂TiO2纳米材料的制备及其光催化性能[J].材料导报:研究篇,2016,30(9):16.23 Wang H, Yan J, Chang W, et al. Practical synthesis of aromatic amines by photocatalytic reduction of aromatic nitro compounds on nanoparticles N-doped TiO2[J].Catalysis Communications,2009,10:989.
24 Wu Z, Dong F, Zhao W, et al. Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride[J].Journal of Hazardous Materials,2008,157:57.
25 柳清,毕世华,曹茂盛.石墨烯吸附性能的研究进展[J].化工管理,2015(12):119.
26 Xue S J, Lan X Z, Zhou J, et al. Advances in the preparation of different morphology nano-sized molybdenum disulfide[J].Ordnance Material Science and Engineering,2010,33(3):88(in Chinese).
薛首峰,兰新哲,周军,等.不同形貌纳米二硫化钼制备的研究进展[J].兵器材料科学与工程,2010,33(3):88.
27 Chen X Y, Zhou H, Huang Y K, et al. Preparation of MoS2 and its absorption property for methyl orange[J].Journal of Liaodong University(Natural Sciences),2015(4):0229(in Chinese).
陈秀云,周欢,黄永葵,等.MoS2的制备及其吸附甲基橙性能[J].辽东学院学报(自然科学版),2015(4):0229.
28 Jiang B J, Tian C G, Pan Q, et al. Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets[J].The Journal of Physical Chemistry C,2011,115(48):23718.
[1] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[2] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[8] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[9] 周新博, 付景顺, 苑泽伟, 钟兵, 刘涛, 唐美玲. 石墨烯纳米带的制备技术及应用研究现状[J]. 材料导报, 2024, 38(4): 22080114-11.
[10] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[11] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[12] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[13] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[14] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
[15] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed