Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1209-1212    https://doi.org/10.11896/j.issn.1005-023X.2018.08.001
  材料研究 |
聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响
司伟1,2, 丁超3, 潘伟2
1 大连交通大学材料科学与工程学院,大连 116028;
2 清华大学新型陶瓷与精细工艺国家重点实验室,北京 100084;
3 大连市环境监测中心, 大连 116023
Influence of Ammonium Polyacrylic Acid and Ammonium Citrate Dispersants on Transmittance of Yttrium Aluminum Garnet Ceramics
SI Wei1,2, DING Chao3, PAN Wei2
1 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028;
2 State KeyLaboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084;
3 Dalian Environmental Monitoring Center, Dalian 116023
下载:  全 文 ( PDF ) ( 1769KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用超声波-微波辅助的醇盐水解沉淀法合成了Y3Al5O12(YAG)前驱体,加入烧结助剂及分散剂后真空烧结制备了YAG透明陶瓷,并对添加不同分散剂烧成的YAG透明陶瓷的晶相结构、微观形貌及光学性能进行了表征。结果表明:添加不同分散剂均可获得纯相YAG透明陶瓷;添加聚丙烯酸铵(NH4PAA),晶粒之间没有明显的晶界,且气孔较大;添加柠檬酸铵(AC),晶粒分散良好,平均晶粒尺寸约为3 μm。未添加分散剂时,YAG透明陶瓷在近红外波段处透光率为76%;添加NH4PAA时,透明陶瓷透光率较低,仅为51%;而添加AC后透明陶瓷透光率可达到78%。添加AC能够细化YAG透明陶瓷晶粒,促进残余气孔排出,从而使YAG透明陶瓷获得更高的透光率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
司伟
丁超
潘伟
关键词:  分散剂  钇铝石榴石  醇盐水解沉淀法  透光率    
Abstract: Yttrium aluminum garnet (Y3Al5O12, YAG) transparent ceramics were prepared by vacuum sintering with the addition of sintering aids and dispersants into YAG precursor. The precursor of YAG was prepared via ultrasound-microwave-assisted alkoxide hydrolysis precipitation method. The crystal structures, morphology and optical properties of transparent YAG ceramics with the addition of different dispersant were investigated. The results showed that pure-phase transparent YAG ceramics could be obtained with the addition of all kinds of dispersants. By adding the ammonium polyacrylic acid (NH4PAA), no obvious boundaries were formed between crystalline grains and large pores emerged. With the addition of ammonium citrate (AC), well-dispersed crystalline grains could be formed with the average size of about 3 μm. The transmittance in the near-infrared waveband of the transparent YAG ceramic was 76% without the addition of dispersants. However, with the addition of NH4PAA, the transmittance of the transparent YAG ceramics was reduced to only 51%, and when adding AC it rose back to 78%. The result indicates that AC can refine the grain size of the transparent YAG ceramics and promote the removal of residual pores, thus contribute to the formation of transpa-rent YAG ceramics with higher transmittance.
Key words:  dispersants    yttrium aluminum garnet    alkoxide hydrolysis precipitation method    transmittance
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TG174.75  
基金资助: 国家自然科学基金(51308086);辽宁省高等学校杰出青年学者成长计划(LJQ2015020);大连市高层次人才创新支持计划(2016RQ051)
作者简介:  司伟:女,1980年生,博士,副教授,硕士研究生导师,主要研究方向为纳米材料及陶瓷材料 E-mail:siwei@djtu.edu.cn
引用本文:    
司伟, 丁超, 潘伟. 聚丙烯酸铵和柠檬酸铵分散剂对钇铝石榴石陶瓷透光率的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1209-1212.
SI Wei, DING Chao, PAN Wei. Influence of Ammonium Polyacrylic Acid and Ammonium Citrate Dispersants on Transmittance of Yttrium Aluminum Garnet Ceramics. Materials Reports, 2018, 32(8): 1209-1212.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.001  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1209
1 Tobi E O, Chaim R. Effect of green density and electric field direction on densification of YAG nano-powders by spark plasma sintering[J].Journal of Materials Science,2009,44:2063.
2 Sharma P K, Dutta R K, Pandey A C. Performance of YAG∶Eu3+, YAG∶Tb3+ and BAM∶Eu2+plasma display nanophosphors[J].Journal of Nanoparticle Research,2012,14:731.
3 Lu Z W, Lu T C, Wei N, et al. Novel phenomenon on valence unvariation of doping ion in Yb∶YAG transparent ceramics using MgO additives[J].Journal of Wuhan University of Technology-Materials Science Edition,2013,28(2):320.
4 Zhang L, Lu Z, Zhu J Z, et al. Citrate sol-gel combustion preparation and photoluminescence properties of YAG∶Ce phosphors[J].Journal of Rare Earths,2012,30(4):289.
5 Caponetti E, Saladino M L, Serra F, et al. Co-precipitation synthesis of Nd∶YAG nano-powders: The effect of Nd dopant addition with thermal treatment[J].Journal of Materials Science,2007,42:4418.
6 Potdevin A, Lechevallier S, Chadeyron G, et al. Waveguiding ter-bium-doped yttrium aluminum garnet coatings based on the sol-gel process[J].Thin Solid Films,2009,517:4610.
7 Guo K, Huang M L, Chen H H, Yang X X, et al. Comparative study on photoluminescence of amorphous and nano-crystalline YAG∶Tb phosphors prepared by a combustion method[J].Journal of Non-Crystalline Solids,2012,358(1):88.
8 Jiao H, Ma Q, He L L, et al. Low temperature synthesis of YAG∶Ce phosphors by LiF assisted sol-gel combustion method[J].Powder Technology,2010,198(2):229.
9 You Y L , Qi L H, Li X L, et al. Preparation of YAG nano-powders via an ultrasonic spray co-precipitation method[J].Ceramics International,2013,39(4):3987.
10 Malekfar R, Arabgari S. Temperature effects on the structure and morphology of Nd∶YAG nanocrystallites[J].Current Applied Phy-sics,2011,11(4):1077.
11 Bagayev S N, Kaminskii A A, Kopylov Yu L, et al. Problems of YAG nanopowders compaction for laser ceramics[J].Optical Mate-rials,2011,33(5):702.
12 Liu J, Cheng X N, Li J, et al. Influence of non-stoichiometry on so-lid-state reactive sintering of YAG transparent ceramics[J].Journal of the European Ceramic Society,2015,35(11):3127.
13 Li Y K, Zhou S M, Lin H, et al. Fabrication of Nd∶YAG transpa-rent ceramics with TEOS, MgO and compound additives as sintering aids[J].Journal of Alloys and Compounds,2010,502(1):225.
14 Yang H, Qin X P, Zhang J, et al. Fabrication of Nd∶YAG transpa-rent ceramics with both TEOS and MgO additives[J].Journal of Alloys and Compounds,2011,509(17):5274.
15 Zhang X R, Wang X C, Fu P, et al. Microwave dielectric properties of YAG ceramics prepared by sintering pyrolysised nano-sized powders[J].Ceramics International,2015,41(6):7783.
16 L Y, Zhang W, Tan J, et al. Dispersion of concentrated aqueous neodymia-yttria-alumina mixture with ammonium poly(acrylic acid) as dispersant[J].Journal of Alloys and Compounds,2011,509(6):3122.
17 Kwadwo A A, Gary L M, John Q D. Aqueous slip casting of transparent yttrium aluminum garnet (YAG) ceramics[J].Ceramics International,2008,34:1309.18 Si W, Ding C, Ding S Q. Synthesis and characterization of YAG na-noparticles by ultrasound-assisted and ultrasound-microwave-assisted alkoxide hydrolysis precipitation methods[J].Journal of Nanomate-rials,2014,2014:1.
19 Zhang L, Pan W, Feng J. Dependence of spectroscopic and thermal properties on concentration and temperature for Yb∶Y2O3 transpa-rent ceramics[J].Journal of the European Ceramic Society,2015,35:2547.
20 Lee S H, Kupp E R, Stevenson A J, et al. Hot isostatic pressing of transparent Nd∶YAG ceramics[J].Journal of the American Ceramic Society,2009,92(7):1456.
21 Zhou Jun, Pan Yubai, Li Jiang, et al. Fabrication of YAG transpa-rent ceramics using slip casting with ethanol[J].Journal of Inorganic Materials,2011,26(3):254(in Chinese).
周军,潘裕柏,李江,等.无水乙醇注浆成型制备YAG透明陶瓷[J].无机材料学报,2011,26(3):254.
[1] 张伟钢, 李娇, 吕丹丹. 涂料助剂对PDMS改性环氧树脂/Al复合涂层性能的影响[J]. 材料导报, 2024, 38(10): 23010030-5.
[2] 刘发付, 高闯, 牟晓明, 张丛, 郭在在, 郭建斌, 曹剑武, 林广庆. 预烧结升温速率与HIP保温时间对AlON透明陶瓷透光率影响的研究[J]. 材料导报, 2023, 37(S1): 23030085-5.
[3] 赵浩成, 刘翠荣, 姚志广, 张莹, 张志超, 刘茜秀. 应用于静电键合的透光聚氨酯弹性体阴极材料的研究[J]. 材料导报, 2023, 37(22): 22060160-6.
[4] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[5] 方思怡, 巴明芳, 许浩锋, 张晨剑, 谢嘉磊, 王志豪. HEC分散剂和纤维掺量对短切碳纤维水泥基材料压敏性的影响[J]. 材料导报, 2023, 37(15): 22020152-9.
[6] 孙国文, 张营, 闫娜, 王亚倩, 李占华. 水下不分散混凝土的抗分散性能设计及其表征研究进展[J]. 材料导报, 2022, 36(1): 20040167-11.
[7] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[8] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[9] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[10] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[11] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[12] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[13] 陈明军. 涂料用分散剂研究进展[J]. 材料导报, 2019, 33(Z2): 643-645.
[14] 赖海文, 韩会丽, 黄伟宏, 董娴, 李冰之, 沈辉, 梁宗存. 户外运行17年单晶硅光伏组件性能失效研究[J]. 材料导报, 2019, 33(2): 215-219.
[15] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed