Please wait a minute...
材料导报  2020, Vol. 34 Issue (15): 15047-15058    https://doi.org/10.11896/cldb.19090112
  材料与可持续发展(三)一环境友好材料与环境修复材料* |
多层氧化石墨烯膜的结构、性能及在水处理中的应用进展
姚庆达1,2, 温会涛1,3, 杨长凯3, 梁永贤1,2, 王小卓1,2, 但卫华1,3
1 福建省皮革绿色设计与制造重点实验室,晋江 362271
2 兴业皮革科技股份有限公司,晋江 362261
3 四川大学制革清洁技术国家工程实验室,成都 610065
Structure and Performance of Multilayer Graphene Oxide Membrane and Its Application in Water Treatment: a Review
YAO Qingda1,2, WEN Huitao1,3, YANG Changkai3, LIANG Yongxian1,2, WANG Xiaozhuo1,2, DAN Weihua1,3
1 Fujian Key Laboratory of Green Design and Manufacture of Leather, Jinjiang 362271, China
2 Xingye Leather Technology Co., Ltd., Jinjiang 362261, China
3 National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 7724KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工业废水对环境的污染和人体的危害日趋严重,该问题亟待处理。在众多污水处理方法中,膜分离因选择性强、分离性能高而受到广泛应用。膜分离主要利用尺寸筛分和静电排斥原理进行超滤、纳滤、反渗透和正渗透等,但传统的膜材料如偏聚氟乙烯、聚砜、聚酰胺等存在污染物截留率低、机械强度差、耐氯性差等缺点,使膜技术面临巨大的难题与挑战。
近年来,石墨烯的研究热潮推动了高分子膜材料的高速发展,氧化石墨烯(GO)优越的性能使GO分离膜成为备受关注的研究热点之一,利用GO纳米片组装的多层结构在增强膜分离性能方面显示出巨大的潜力。与GO改性的常规分离膜不同,多层GO膜物理力学性能和化学稳定性更高,并可通过结构设计如层数、氧化程度、改性状况、层间距等来改善分离效果。
多层膜的渗透性与分离层的层数有关,膜层数增加可以提高膜的抗穿透性和选择性;石墨烯的氧化程度决定了GO的层数、亲水性和电荷性质,还原程度的增加有利于膜渗透性的提升,氧化程度则有利于分离性能的提升;可以通过改变电荷性质对GO膜进行改性,从而增强GO与目标分子或离子的相互作用。GO纳米通道的结构则影响着水分子的形态和运输,利用分子动力学可模拟和预测多层GO膜的分离性能。
本文简要介绍了多层GO膜的制备方法,探讨了结构控制与GO膜分离性能的关系,详细介绍了GO膜的层数、氧化程度、改性、层间距对分离性能的影响,并通过分子动力学对多层GO膜分离进行模拟分析;展望了其在水处理领域面临的机遇与挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚庆达
温会涛
杨长凯
梁永贤
王小卓
但卫华
关键词:  水处理  膜分离  多层氧化石墨烯膜  性能控制    
Abstract: The pollution of industrial wastewater to the environment and the harm to human body are becoming more and more serious, and this problem needs to be dealt with urgently. Among many industrial wastewater treatment methods, membrane treatment is widely used because of its good selectivity and separation efficiency. Membrane treatment, including ultrafiltration, nanofiltration, reverse osmosis and positive osmosis, is mainly based on the principles of size screening and electrostatic exclusion. However, traditional membrane materials, such as polyvinylidene fluoride, polysulfone and polyamide, have some defects, for instance, low rejection rate of pollutants, poor mechanical strength and poor chlorine resistance, which make membrane treatment face enormous difficulties and pressures.
In recent years, the research and application of graphene materials have promoted the development of membrane materials. Graphene oxide separation membranes have become one of the research hotspots due to their excellent comprehensive properties. The multilayer structure assembled by graphene oxide nanosheets has shown great potential in enhancing the separation performance of membrane. Unlike graphene oxide modified conventional separation membranes, multilayer graphene oxide membranes exhibit superior physical and mechanical properties and chemical stability, and can be improved by structural design such as layer number, oxidation degree, modification status and interlayer spacing.
The permeability of multilayer graphene oxide membrane is related to the number of separated layers, and increasing the number of membrane layers can improve their penetration resistance and selectivity. The number of layers, hydrophilicity and charge characteristic of GO are determined by the oxidation degree of graphene, plus, the increase of reduction degree is beneficial to the improvement of membrane permeability, while the oxidation degree is beneficial to the improvement of separation performance. The modification of GO membrane can change the charge characteristic, thus enhancing the interaction between GO and target molecules or ions. The structure of GO nanochannels affect the morphology and transport of water molecules, and the molecular dynamics can simulate and predict the separation performance of multilayer GO membrane.
Here the preparation methods of multi-layer graphene oxide membranes are briefly introduced, and the relationship between structure control and separation performance of graphene oxide membranes is discussed. The effects of layer number, oxidation degree, modification and interla-yer spacing of graphene oxide membranes on separation performance are introduced in detail. The separation performance of multilayer graphene oxide membranes is simulated and analyzed by molecular dynamics. The application progress of multilayer graphene oxide membrane in removing heavy metal ions, desalination and organic matter is reviewed, and the opportunities and challenges in water treatment are prospected.
Key words:  water treatment    membrane separation    multilayer graphene oxide membrane    performance control
               出版日期:  2020-08-10      发布日期:  2020-07-14
ZTFLH:  TB43  
基金资助: 泉州市科技计划项目(2018G001)
通讯作者:  dwh5607@263.net   
作者简介:  姚庆达,兴业皮革科技股份有限公司福建省皮革绿色设计与制造重点实验室,副主任。2015年毕业于东北大学材料科学与工程专业。主要从事功能皮革、石墨烯基复合材料等方向的研究。
但卫华,四川大学制革清洁技术国家工程实验室研究员,兴业皮革科技股份有限公司福建省皮革绿色设计与制造重点实验室主任。主要从事制革清洁化生产、高性能皮革绿色设计与制造、胶原基生物材料等方向的研究。
引用本文:    
姚庆达, 温会涛, 杨长凯, 梁永贤, 王小卓, 但卫华. 多层氧化石墨烯膜的结构、性能及在水处理中的应用进展[J]. 材料导报, 2020, 34(15): 15047-15058.
YAO Qingda, WEN Huitao, YANG Changkai, LIANG Yongxian, WANG Xiaozhuo, DAN Weihua. Structure and Performance of Multilayer Graphene Oxide Membrane and Its Application in Water Treatment: a Review. Materials Reports, 2020, 34(15): 15047-15058.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090112  或          http://www.mater-rep.com/CN/Y2020/V34/I15/15047
1 Arumugham T, Amimodu R, Kaleekkal N J, et al. Journal of Environmental Sciences, 2019, 82, 57.2 Nakagawa K, Sera T, Kunimastsu M, et al. Separation and Purification Technology, 2019, 219, 222.3 Ghafri B A, Bora T, Sathe P, et al.Applied Catalysis B: Environmental, 2018, 233, 136.4 Yuan B, Sun H, Zhao S, et al. Separation and Purification Technology, 2019, 220, 162.5 Benkhaya S, Achiou B, Ouammou M, et al. Materials Today Communications, 2019, 19, 212.6 Huadib B, Gomes V, Shi J, et al. Separation and Purification Technology, 2018, 190, 143.7 Gu J, Ren C, Zong X, et al. Ceramics International, 2016, 42(10), 12427.8 Mohtor N H, Othman M H, Bakar S A, et al. Chemosphere, 2018, 208, 595.9 Liu J, He K, Tang S, et al. Separation and Purification Technology, 2019, 217, 118.10 Wei Y, Zhang Y, Gao X, et al.Carbon, 2018, 139, 964.11 Kadhom M, Deng B. Applied Materials Today, 2018, 11, 219.12 Liu G, Shen J, Liu Q, et al. Journal of Membrane Science, 2018, 548, 548.13 Ma Q, Ren X, Pang L, et al. Gold Bulletin, 2018, 51(1), 27.14 Rokmana A W, Asrinani A, Suhendar H, et al. Journal of Physics: Conference Series, 2018, 1011(1), 1.15 David C T, Lin L, Grossman J C. Nano Letters, 2016, 16(2), 1027.16 Li S, Gao B, Wang Y, et al. Desalination, 2019, 464, 94.17 Mahalingam D, Kim D, Nunes S. MRS Advances, 2017, 46, 2505.18 Wang J, Gao X, Wang J, et al. ACS Applied Materials & Interfaces, 2015, 7, 4381.19 Mahdavi H, Rahimi A. Desalination, 2018, 433, 94.20 Rastgar M, Bozorg A, Shakeri A, et al. Chemical Engineering Research and Design, 2018, DOI: 10.1016/j.cherd.2018.11.010.21 Suroto B J, Sembiring H F, Fathurrahman M T, et al. Journal of Physics: Conference Series, 2018, DOI: 10.1088/1742-6596/1080/1/012020.22 Ibrahim A F, Lin Y S.Chemical Engineering Science, 2018, 190, 312.23 Zeynali R, Ghasemazadeh K, Sarand A B, et al.Separation and Purification Technology, 2018, 200, 169.24 Tsou C H, An Q F, Lo S C, et al. Journal of Membrane Science, 2015, 477, 93.25 Cote L J, Kim Z, Zhang C, et al. Soft Matter, 2010, 6, 6096.26 Kim J, Cote F, Kim W, et al. Journal of American Chemical Society, 2010, 132, 8180.27 Ermakova E V, Ezhov A A, Branchikov A E, et al. Journal of Colloid and Interface Science, 2018, DOI: 10.1016/j.jcis.2018.06.086.28 Gascho J L, Costa S F, Recco A A, et al. Journal of Nanomaterials, 2019, DOI: 10.1155/2019/5963148.29 François A V, Alejandra M V, Tabary N, et al. Materials Science & Engineering C, 2019, 100, 554.30 Fu J, Zhang M, Liu L, et al. Materials Letters, 2019, 236, 69.31 Lee S M, Jeong H, Kim N H, et al. Advanced Composite Materials, 2018, 27(5), 457.32 Chen W, Liu P, Liu Y, et al. Chemical Engineering Journal, 2018, 353,115.33 Kang H, Shi J, Liu L, et al. Applied Surface Science, 2018, 428, 990.34 Wen L L, Shen Q. Materials Chemistry and Physics, 2018, 213, 455.35 Li P, Chen K, Zhao L, et al. Composites Part B, 2019, 166, 663.36 Jilani A, Othman M H, Ansari M O, et al. Journal of Molecular Liquids, 2018, 253, 284.37 Hashemi M, Omidi M, Muralidharan B, et al. Acta Biomaterialia, 2018, 65, 376.38 Mona A A. Ain Shams Engineering Journal, 2018, DOI: 10.1016/j.asej.2018.08.001.39 Mukherjee R, Bhunia P, De S. Journal of Cleaner Production, 2018, DOI: 10.1016/j.jclepro.2018.12.162.40 Wei Y, Zhang Y, Gao X, et al. Carbon, 2016, 108, 568.41 Shao F, Xu C, Ji W, et al. Desalination, 2017, 423, 21.42 Wansuk C, Jungkyu C, Joona B, et al. ACS Applied Materials & Interfaces, 2013, 23(5), 12510.43 Mahmoudian M, Kochameshki M G, Hossenzadeh M. Journal of Environmental Chemical Engineering, 2018, 6, 3122.44 Zhao J, Zhu Y, Pan F, et al. Journal of Membrane Science, 2015, 487, 162.45 Zhu D, Guo D, Zhang L, et al. Sensors & Actuators: B. Chemical, 2018, DOI: 10.1016/j.snb.2018.10.151.46 Hu M, Mi B. Journal of Membrane Science, 2014, 469, 80.47 Liu C, Wang W, Li Y, et al. Journal of Membrane Science, 2019, 576, 48.48 Wang T, Lu J, Mao L, et al. Journal of Membrane Science, 2016, 515, 125.49 Jose P P, Kala M S, Kalarikkal N, et al. Materials Today: Proceedings, 2018, 5(8), 16306.50 Prerna B, Singh P A, Dhirendra B. Journal of Phhysical Chemistry C, 2017, 121, 9847.51 Setiadji S, Nuryadin B W, Ramadhan H, et al. IOP Conference Series: Materials Science and Engineering, 2018, 434, 012079.52 Amadei C A, Montessori A, Kadow J P, et al. Environment Science and Technology, 2017, 51, 4280.53 Huang M, Tang Z, Yang J. Diamond & Related Materials, 2019, 94,73.54 Wang G, Jia L, Hou B, et al. New Carbon Mater, 2015, 30, 30.55 Ye N, Wang Z, Wang S, et al.Environment Science and Pollution Research, 2018, 25, 10956.56 Huang H, Joshi R K, Silva K K, et al. Journal of Membrane Science, 2019, 572, 12.57 Wei N, Peng X, Xu Z. ACS Applied Materials & Interfaces, 2014, 6, 5877.58 Khorramdel H, Dabiri E, Tabrizi F F, et al. Separation and Purification Technology, 2019, 212, 497.59 He L, Dumée L F, Feng C, et al. Desalination, 2015, 365, 126.60 Bano S, Mahmood A, Kim S J, et al. Journal of Material and Chemistry A, 2015, 3(5), 2065.61 Nan Q, Li P, Cao B. Applied Surface Science, 2016, 397, 521.62 Zhao S, Zhu H, Wang H, et al. Journal of Hazardous Materials, 2019, 366, 659.63 Lv J, Zhang G, Zhang H, et al. Chemical Engineering Journal, 2018, 352, 765.64 Yang E, Alayande A B, Kin C M, et al. Desalination, 2018, 426, 21.65 Gao B, Ansari A, Yi X, et al. Journal of Membrane Science, 2018, 552: 132.66 Hua D, Chuang T. Carbon, 2017, 122, 604.67 Hua D, Rai K, Zhang Y, et al. Chemical Engineering Science, 2017, 161, 341.68 Ganesh B M, Isloor A M, Ismail A F. Desalination, 2013, 313, 199.69 Yang K, Huang L, Wang Y, et al. New Journal of Chemistry, 2019, 43, 2846.70 Zhang Y, Huang L, Wang Y, et al. Polymers, 2019, 11(2), 188.71 Ganesh B M, Isloor A M, Ismail A F. Desalination, 2013, 313, 199.72 Yuan Y, Gao X, Wei Y, et al. Desalination, 2017, 405, 29.73 Surwade S P, Smirnov S N, Vlassiouk I V, et al. WNature Nanotechnology, 2015, 10(5), 459.74 Hosseini M, Azamat J, Hamid E N. Applied Surface Science, 2018, 427, 1000.75 Hosseini M, Azamat J, Hamid E N. Materials Chemistry and Physics, 2019, 223, 277.76 Nigiz F U. Desalination, 2018, 433, 164.77 Le L H, Trinh D X, Trung N B, et al. Carbon, 2017, 114, 519.78 Joshi R K, Carbone P, Wang F C, et al. Science, 2014, 343, 752.79 Abraham J, Vasu K S, Willliams C D, et al. Nature Nanotechnology, 2017, 12, 546.80 Wei S H, Tsou C H, Guzman M D, et al. Chemistry of Materials, 2014, 26(9), 2983.81 Rezania B, Severin N, Talyzin A V, et al. Nano Letters, 2014, 14, 3993.82 Zheng S, Tu J J, Urban S, et al. ACS Nano, 2017, 11, 6440.83 Bansal P, Panwar A S, Bahadur D, et al. Journal of Physical Chemistry: C, 2017, 121,9847.84 Babu J S, Sathian S P. Journal of Chemical Physics, 2011, 134, 194509.85 Zhu J, Tian M, Hou J, et al. Journal of Materials Chemistry: A, 2016, 4(5), 1980.86 Kochameshki M G, Marjani A, Mahmoudian M, et al. Chemical Engineering Journal, 2017, 309, 206.87 Xi Y, Hu J, Liu Z, et al. ACS Applied Materials & Interfaces, 2016, 8(24), 15557.88 Liu H, Wang H, Zhang X. Advanced Materials, 2015, 27, 249.89 Ma J, Guo X, Ying Y, et al. Chemical Engineering Journal, 2017, 313, 890.90 Luo S, Wang J. Environment Science and Pollution Research Internatio-nal, 2018, 25(6), 5512.91 Zhou K G, Vasu K S, Cherian C T, et al.Nature, 2018, 7713(559), 236.92 Nair R R, Wu H A, Jayaram P N, et al. Science, 2012, 6067(335), 442.93 Wei N, Peng X, Xu Z. ACS Applied Materials & Interfaces, 2014, 6(8), 5877.94 Giri A K, Teixeira F, Cordeiro M N. Desalination, 2019, 460, 1.95 Guan K, Shen J, Liu G, et al. ACS Applied Material and Interfaces, 2016, 8(9), 6211.96 Dai H, Xu Z, Yang X. The Journal of Physical Chemistry C, 2016, 120, 22585.97 Chen B, Jiang H, Liu X, et al. The Journal of Physical Chemistry C, 2017, 121(2), 1321.98 Liu L, Zhang R, Liu Y, et al. Journal of Molecular Modeling, 2018, 24(6), 1.99 Yu T, Bai L, Xu Z, et al. Molecular Simulation, 2018, 44(10), 840.100 Willcox J A, Kim J H. The Journal of Physical Chemistry C, 2017, 121, 23659.101 Liu B, Wu R, Law A W, et al. Scientific Reports, 2016, DOI: 10.1038/srep38583.102 Gao Z, Giovambattista N, Sahin O. Scientific Reports, 2018, DOI: 10.1038/s41598-018-24358-3.103 Raghav N, Chakraborty S, Maiti P K. Physical Chemistry Chemical Phy-sics, 2015, 17, 20557.104 Qiao Z, Xie W, Cai X, et al. Chemical Physics Letters, 2019, 722, 153.105 David C T, Lin L, Grossman J C. Nano Letters, 2016, 16(2), 1027.106 Muscatello J, Jeager F, Matar O K, et al. ACS Applied Materials & Interfaces, 2016, 8(19), 12330.107 Deng J, You Y, Bustamante H, et al. Chemical Science, 2017, 8(3), 1701.108 Kargar M, Lohrasebi A. Physical Chemistry Chemical Physics, 2019, 21, 3304.109 Borg M K, Lockerby D A, Ritos K, et al. Journal of Membrane Science, 2018, 567(1),115.110 Yamada T, Matsuzaki R.Scientific Reports, 2018, DOI: 10.1038/s41598-017-18688-x.111 Samuel M S, Bhattacharya J, Raj S, et al. International Journal of Biological Macromolecules, 2019, 121, 285.112 Kaya A, Onac C, Alpoğuz H K, et al. Journal of Molecular Liquids, 2016, 219, 1124.113 Onaç C, Kaya A, Alpoğuz H K, et al. International Journal of Environmental Science and Technology, 2017, 14(11), 2423.114 Mcmanamon C, Burke A M, Holme J D, et al. Journal of Colloid and Interface Science, 2012, 369(1), 330.115 Rao Z, Feng K, Tang B, et al. ACS Applied Materials & Interfaces, 2017, 9(3), 2594.116 Rezaee R, Nassei S, Mahyia H, et al. Journal of Environmental Health Science & Engineering, 2015, DOI: 10.1186/s40201-015-0217-8.117 Qiu S, Wu L, Pan X, et al. Journal of Membrane Science, 2009, 342, 165.118 Zhang Y, Zhang S, Gao J, et al. Journal of Membrane Science, 2016, 515,230.119 Zhang Y, Zhang S, Chuang T. Environment Science and Technology, 2015, 49(16), 10235.120 Xu X, Yu Y, Lin N, et al. Water Science & Technology: Water Supply, 2018, 18(6), 2162.121 Kibechu R W, Ndinteh D T, Msagati T A, et al. Physics and Chemistry of the Earth, 2017, 100, 126.122 Zhang H, Bin L, Pan J, et al. Journal of Membrane Science, 2017, 539, 128.123 Jin L, Wang Z, Zheng S, et al. Journal of Membrane Science, 2018, 545, 11.124 Kai W. International Journal of Electrochemical Science, 2017, 12, 8306.125 Kang H, Wang W, Shi J, et al. Applied Surface Science, 2019, 465, 1103.126 Shao F, Dong L, Dong H, et al. Journal of Membrane Science, 2017, 525,9.127 Yang Y, Su K, Li Z. Journal of Membrane Science, 2018, 653, 718.128 Wu Z, Zhang C, Peng K, et al. Environmental Science & Engineering, 2018, 12 (3),1.129 Homem N C, Beluci N C, Amorim S, et al. Applied Surface Science, 2019, 486, 499.130 Cheng M, Huang L, Wang Y, et al. Journal of Materials Science, 2019, 54(1), 252.131 Abdi G, Alizadeh A, Zinadini S, et al. Journal of Membrane Science, 2018, 552, 326.132 Liu T, Yang B, Graham N, et al. Journal of Membrane Science, 2017, 542, 31.133 Xia S, Ni M. Journal of Membrane Science, 2015, 473, 54.
[1] 李鸣明, 詹世平, 宫蕾. 壳聚糖/明胶复合微球的制备及对铬离子的吸附性能[J]. 材料导报, 2020, 34(Z1): 535-538.
[2] 徐萍, 钱晓明, 郭昌盛, 徐志伟, 赵立环, 买魏, 李静, 田旭, 朵永超. 用于盐湖卤水镁锂分离的纳滤技术研究进展[J]. 材料导报, 2019, 33(3): 410-417.
[3] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[4] 孟仙, 邓橙, 朱孟府, 李奎, 邓宇. 纳米氧化镁表面修饰制备荷正电微孔陶瓷膜及其性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 16-20.
[5] 赵曼, 张慧峰, 张雨山, 黄海, 魏杨扬. 碳纳米管的性能及其在海水淡化膜分离材料中的应用*[J]. 《材料导报》期刊社, 2017, 31(3): 116-122.
[6] 吴涛, 毛丽莉, 王海增. Mg/Fe-LDHO/PES复合膜吸附材料的制备与除氟性能*[J]. 《材料导报》期刊社, 2017, 31(14): 26-30.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed