Please wait a minute...
材料导报  2022, Vol. 36 Issue (20): 22010264-8    https://doi.org/10.11896/cldb.22010264
  金属与金属基复合材料 |
稀土掺杂对稀土-镁基合金储氢性能的影响
李英杰, 姚继伟, 雍辉, 马江微, 王帅, 胡季帆*
太原科技大学材料科学与工程学院,太原 030024
Effect of Rare Earth Doping on Hydrogen Storage Properties of RE-Mg Based Hydrogen Storage Alloys
LI Yingjie, YAO Jiwei, YONG Hui, MA Jiangwei, WANG Shuai, HU Jifan*
School of Materials Science & Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 5461KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作构建了稀土掺杂的储氢合金体系,通过提高其稀土氢化物的催化能力来改善Mg-RE系储氢合金的性能,并分析了不同稀土掺杂后合金性能的差异,以获得改善其热力学和动力学性能的途径。通过真空感应熔炼制备了Mg90Ce5RE5 (RE=La、Nd、Sm、Y)合金,并分析了其相应的物相组成和微观结构。同时,采用等体积方法测试了Mg90Ce5RE5不同温度下的压力-温度-组成(PCT)曲线和等温吸放氢动力学性能。结果表明,氢化后的样品均是由MgH2相和相应的稀土氢化物REH2+x相组成的复合材料,然而在放氢后,仅MgH2相发生分解反应,生成Mg相并放出氢气。原位生成的REH2+x相不发生分解,通过降低Mg-H键的稳定性、合金的表观活化能以及提升H原子的扩散速率,来促进Mg与MgH2的可逆转化。这导致了不同合金的PCT平台压高度的变化,从而影响其热力和动力学性能。不同合金的热力学焓变从大到小的规律分别为Mg90Ce5La5>Mg90Ce5Nd5>Mg90Ce5Sm5>Mg90Ce5Y5,这和各掺杂元素与Ce的亲和力关系一致,由此可见异质元素的共掺杂更有利于改善合金的热力学性能。同时,对应于RE=La、Nd、Sm、Y合金的放氢活化能值分别为112.6 kJ/mol、114.3 kJ/mol、104.9 kJ/mol、123.3 kJ/mol。此外,各合金在放氢反应中的速率,受制于氢原子在合金表面的复合能,这为稀土-镁基储氢合金的改善提供了重要的科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李英杰
姚继伟
雍辉
马江微
王帅
胡季帆
关键词:  储氢材料  镁基合金  稀土掺杂  氢化反应    
Abstract: In this work, the rare earth doping hydrogen storage system were constructed to improve the properties of Mg-based hydrogen storage alloys by improving the catalytic characteristic of the rare earth hydride, and the difference of the performance of the different rare earth doping was analyzed in order to obtain the way to enhance the thermodynamic and kinetic properties. The Mg90Ce5RE5 (RE=La,Nd,Sm,Y) alloys were prepared by vacuum induction melting, and the corresponding phase composition and microstructure were also analyzed. Meanwhile, the PCT curves and the kinetic properties of isothermal hydrogen adsorption and desorption at different temperatures also were tested by the Sie-vert isometric volume method. The results indicate that the hydrogenated Mg90Ce5RE5 (RE=La,Nd,Sm,Y) samples are the composites mate-rials consisting of MgH2 phases and the corresponding REH2+x phases. However, only the MgH2 phases decompose into corresponding Mg phases after desorption hydrogen. The in-situ formed REH2+x phase that doesn’t decompose in the dehydrogenated reaction, acts as diffe-rent catalytic to promote the reversible conversion of Mg and MgH2, which result in a change in PCT plateau pressure of the different alloys and further affects their thermodynamics and kinetic properties. The regularities of enthalpy change from large to small are Mg90Ce5La5>Mg90Ce5Nd5>Mg90Ce5Sm5>Mg90Ce5Y5, which is consistent with the affinity relationship between each element and Ce, so it can be concluded that the co-doping of heterogeneous elements is more conducive to improving the thermodynamic performance. Meanwhile, the dehydrogenation activation energies of RE=La, Nd, Sm and Y alloys are 112.6 kJ/mol, 114.3 kJ/mol, 104.9 kJ/mol and 123.3 kJ/mol, respectively. In addition, the rate of hydrogen desorption reaction of each alloy is limited by the recombination energy of hydrogen on the alloy surface, which provides an important scientific basis for the improvement of rare earth Mg-based hydrogen storage alloys.
Key words:  hydrogen storage    Mg-based alloy    rare earth doping    hydrogenation reaction
发布日期:  2022-10-26
ZTFLH:  TG139.1  
基金资助: 国家自然科学基金(51761032;51871125);来晋优秀博士奖励资金(20212042;20212046);太原科技大学科研启动基金(20202040;20212041)
通讯作者:  *hujifan@tyust.edu.cn   
作者简介:  李英杰,太原科技大学材料科学与工程学院讲师。1995年西北工业大学高分子材料与工程专业本科毕业, 2008年沈阳工业大学材料学专业硕士毕业。目前主要从事材料制备与表征、新能源材料的研究工作。在Strength of Materials、Optoelectronics and Advanced Materials、《以特种铸造及有色合金》等期刊发表多篇文章。
胡季帆,太原科技大学材料科学与工程学院特聘教授、长江学者、博士研究生导师。1985年山东大学物理学专业本科毕业,1988年中科院物理研究所凝聚态物理专业硕士毕业,1993年中科院物理研究所凝聚态物理专业博士毕业。目前主要从事储氢、永磁等稀土功能材料的研究工作。发表论文200余篇,包括Renewable Energy、Materials Characte-rization、International Journal of Hydrogen Energy、Journal of Magnesium and Alloys等。曾获教育部科技进步一等奖。
引用本文:    
李英杰, 姚继伟, 雍辉, 马江微, 王帅, 胡季帆. 稀土掺杂对稀土-镁基合金储氢性能的影响[J]. 材料导报, 2022, 36(20): 22010264-8.
LI Yingjie, YAO Jiwei, YONG Hui, MA Jiangwei, WANG Shuai, HU Jifan. Effect of Rare Earth Doping on Hydrogen Storage Properties of RE-Mg Based Hydrogen Storage Alloys. Materials Reports, 2022, 36(20): 22010264-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010264  或          http://www.mater-rep.com/CN/Y2022/V36/I20/22010264
1 Demirbas A. Energy Sources, 2007, 2, 287.
2 Shao H Y, He L Q, Lin H J, et al. Energy Technology, 2018, 6, 445.
3 Zhou C, Wang H, Ouyang L Z, et al. Materials Reports A:Review Papers, 2019, 33(2), 117(in Chinese).
周超, 王辉, 欧阳柳章, 等. 材料导报:综述篇, 2019, 33(2), 117.
4 Dong X P, Cheng Y F, Su J W, et al. Materials Reports A:Review Papers, 2020, 34(8), 15110(in Chinese).
董小平, 陈亚方, 苏建文, 等. 材料导报:综述篇, 2020, 34(8), 15110.
5 Yartys V A, Lototskyy M V, Akiba E, et al. International Journal of Hydrogen Energy, 2019, 44, 7809.
6 Lee C J, Kim T. International Journal of Hydrogen Energy, 2015, 40, 2274.
7 Liu S Y, Liu J Y, Liu X F, et al. Nature Nanotechnology, 2021, 16, 336.
8 Din X, Chen R R, Jin Y L,et al. Journal of Power Sources, 2018, 374, 158.
9 Lu Q, Huang F, Guo X. Materials Reports, 2021, 35(9), 9033(in Chinese).
卢祺,黄锋,郭逊. 材料导报, 2021, 35(9), 9033.
10 Yong H, Wei X, Hu J F,et al. Renewable Energy, 2020, 162, 2153.
11 Jiang X Y, Wang J Q, Qiu L L, et al. Materials Reports, 2021, 35(S2), 470(in Chinese).
蒋星宇,王洁琼,邱琳琳, 等. 材料导报, 2021, 35(S2), 470.
12 Yu X B, Tang Z W, Sun D L,et al. Progress in Materials Science, 2017, 88, 1.
13 Liang H, Zhang H, Zong Y. Journal of Alloys and Compounds, 2022, 905, 164279.
14 Ding X, Chen R R, Zhang J X, et al. Journal of Alloys and Compounds, 2022, 897, 163137.
15 Ouyang L Z, Yang X S, Zhu M,et al. The Journal of Physical Chemistry C, 2017, 118, 7808.
16 Yong H, Wei X, Hu J F, et al. Journal of Magnesium and Alloys, 2022, 9, 1977.
17 Zhou Y F, Liu Y F, Wu W,et al. The Journal of Physical Chemistry C, 2012, 116, 15885.
18 Ouyang L Z, Dong H W, Peng C H,et al. International Journal of Hydrogen Energy, 2007, 32, 3929.
19 Yong H, Guo S H, Yuan Z M, et al. Journal of Materials Science & Technology, 2020, 51, 84.
20 Liao W F, Jiang W B, Yang X S, et al. Journal of Rare Earths, 2021, 39, 1010.
21 Sun T, Wang H, Zhang Q A,et al. Journal of Materials Chemistry, 2011, 21, 9179.
22 Zhang W K, Wang Y G, Yang X G,et al. Rare Metal Materials and Engineering, 2020, 31(6), 432(in Chinese).
张文魁,王云刚,杨晓光,等. 稀有金属材料与工程,2002,31(6),432.
23 Pebler A, Wallace W E. The Journal of Physical Chemistry, 1962, 66, 148.
24 Liu Z C, Li Y M, Ruan F, et al. International Journal of Hydrogen Energy, 2021, 46, 4201.
25 Cui J, Ouyang L Z, Wang H, et al. Journal of Alloys and Compounds, 2018, 737, 427.
26 Ranganathan S. Current Science, 2003, 85, 1404.
27 Yuan Z M, Zhang Y H, Yang T, et al. Renewable Energy,2018,116,878.
28 Zou X J, Zeng X Q, Ying Y J, et al. International Journal of Hydrogen Energy, 2013, 38, 2337.
29 Yang T, Yuan Z M, Bu W G, et al. International Journal of Hydrogen Energy, 2016, 41, 2689
30 Zhang B, Lyu Y J, Yang J G, et al. Journal of Alloys and Compounds, 2017, 702, 126.
31 Lin H J, Ouyang L Z, Wang H, et al. International Journal of Hydrogen Energy, 2012, 37, 14329.
32 Fu Y K, Ding Z M, Ren S Q, et al. International Journal of Hydrogen Energy, 2020, 45, 28154.
33 Lei X W, Huang J H, Jin X, et al. Materials Letters, 2016, 181, 240.
34 Fernandez J F, Sanchez C R. Journal of Alloys and Compounds, 2002, 340, 189.
35 Yuan Z M, Yang T, Bu W G, et al. International Journal of Hydrogen Energy, 2016, 41, 5994.
36 Li Q, Pan Y B, Leng H Y, et al. International Journal of Hydrogen Energy, 2014, 39, 14247.
37 Kalinichenka S, Rontzsch L, Riedl T, et al. International Journal of Hydrogen Energy, 2011, 36, 10808.
38 Yong H, Guo S H, Yuan Z M, et al. International Journal of Hydrogen Energy, 2019, 44, 16765.
39 Jiang G M, Peng M, Lyu X S, et al. Journal of Chongqing Technology and business University(Natural Science Edition),2021,38(3),1.
蒋光明, 彭敏, 吕晓书, 等. 重庆工商大学学报(自然科学版), 2021, 38(3), 1.
[1] 任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
[2] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[3] 周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
[4] 赵丽娟, 田晓, 姚占全, 江丽萍. Fe及Fe83Ga17和Fe83Ga17Pr0.3合金的微结构与磁致伸缩性能[J]. 材料导报, 2018, 32(16): 2832-2836.
[5] 王 斌,张乐乐,杜金晶,张 博,梁李斯,朱 军. 电热还原法制备V-Ti-Cr-Fe储氢合金[J]. 《材料导报》期刊社, 2018, 32(10): 1635-1638.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed