Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20090180-10    https://doi.org/10.11896/cldb.20090180
  无机非金属及其复合材料 |
纳米金属氧化物在化学战剂洗消方面的研究进展
郭玥婷, 雷美玲, 陈文明, 辛毅, 许文彩, 闵崎, 陈立坤, 吴遥, 孔令策, 左言军
防化研究院国民核生化灾害防护国家重点实验室,北京 10220
Research Progress of Nano Metal Oxides in Decontamination of Chemical Warfare Agents
GUO Yueting, LEI Meiling, CHEN Wenming, XIN Yi, XU Wencai, MIN Qi, CHEN Likun, WU Yao, KONG Lingce, ZUO Yanjun
National Key Laboratory of Nuclear and Biochemical Disaster Prevention, Beijing 102205, China
下载:  全 文 ( PDF ) ( 3082KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学战剂(CWAs)(如芥子气(HD)、梭曼(GD)、沙林(GB)和维埃克斯(VX)等)是指用于战争、具有剧烈毒性、能大规模地毒害或杀伤人畜和植物的各种化学物质。其对人员的伤害不可估量,因此对具有快速、广谱消毒能力的洗消剂的研究是近年来研究的热点之一。纳米金属氧化物在化学毒剂、含磷农药、污水处理等方面表现出优异性能。纳米金属氧化物能够对化学战剂进行吸附和反应降解,尤其复合型纳米金属氧化物,其表面积更大,能够提供更多的活性位点,但存在易团聚、样品含水量对降解效果影响大等问题。本文针对纳米金属氧化物的制备方法对化学战剂及其模拟剂的消毒动力学、消毒能力、反应机理等方面进行了概述,提出消毒效果及机理方面的研究可能是解决广谱消毒问题的关键。开发和制备复合型纳米金属氧化物,以实现对三种毒剂的高效广谱消毒,将会是未来重要的研究方向之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭玥婷
雷美玲
陈文明
辛毅
许文彩
闵崎
陈立坤
吴遥
孔令策
左言军
关键词:  纳米金属氧化物  复合材料  化学战剂  洗消  机理    
Abstract: Chemical warfare agents(CWAs), such as sulfur mustard (HD), Soman (GD), Sarin (GB) and VX, are chemical substances used for war purposes that are highly toxic and capable of poisoning or killing humans, animals and plants on a large scale. They do immeasurable harm to humans, and thus the research on decontamination agents with fast and broad spectrum is one of the hotspots in recent years. Nano-metal oxi-des have shown excellent performance in CWAs, phosphorus pesticides, sewage treatment and other fields. Nano-metal oxides can adsorb and react with CWAs, especially the composite metal oxides. They have larger surface area and can provide more active sites. However, some problems need to be solved, such as easy agglomeration and large influence of sample moisture content. This paper summarizes the preparation methods, decontamination kinetics, decontamination ability and reaction mechanism of nano-metal oxides for CWAs and their simulators. It is suggested that the study of decontamination effect and mechanism may be the key to solving the problem of broad-spectrum decontamination. It should be one of the important research directions in the future to develop and prepare composite metal oxides for the high efficiency and wide spectrum decontamination of the three agents.
Key words:  nano metal oxides    composite material    chemical warfare agents    decontamination    mechanism
发布日期:  2022-06-09
ZTFLH:  O62  
基金资助: 国民核生化灾害防护国家重点实验室基金项目(SKLNBC2018-08)
通讯作者:  konglince@163.com; zyj1688@sina.com   
作者简介:  郭玥婷,现于军事科学院攻读硕士学位,在左言军研究员的指导下进行研究,目前主要研究领域为纳米金属氧化物降解化学战剂。
孔令策,国民核生化灾害防护国家重点实验室副研究员,2003年6月本科毕业于河北工业大学化工学院,2010年6月博士毕业于防化学院。主要从事特种污染物处置技术研究。近年来,在纳米材料和功能化离子液体制备及应用领域发表论文30余篇,申请专利10余项。
左言军,军事科学院防化研究院研究员、技术大校、博士研究生导师。1996年7月本科毕业于现陆军防化学院,2000年毕业于防化研究院,获环境工程硕士学位,2003年毕业于防化研究院,获军事化学专业博士学位,全军优秀博士学位论文获得者。目前主要从事核生化处置技术研究。目前为军委科技委国防科技机动处突专家组成员,北京市表面工程学会理事。先后获得国家科技进步二等奖1项,军队科技进步一等奖1项,二等奖5项,主持完成多型军用洗消剂和洗消装备研制,在国内外核心期刊发表论文50余篇,SCI和EI收录10余篇。
引用本文:    
郭玥婷, 雷美玲, 陈文明, 辛毅, 许文彩, 闵崎, 陈立坤, 吴遥, 孔令策, 左言军. 纳米金属氧化物在化学战剂洗消方面的研究进展[J]. 材料导报, 2022, 36(11): 20090180-10.
GUO Yueting, LEI Meiling, CHEN Wenming, XIN Yi, XU Wencai, MIN Qi, CHEN Likun, WU Yao, KONG Lingce, ZUO Yanjun. Research Progress of Nano Metal Oxides in Decontamination of Chemical Warfare Agents. Materials Reports, 2022, 36(11): 20090180-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090180  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20090180
1 Song W C, Yang T T, Wang X X, et al. Environmental Science: Nano, 2016, 3(6), 1318.
2 Yu S J, Wang X X, Ai Y J, et al. Journal of Materials Chemistry A, 2016, 4(15), 5654.
3 Wang Y Q, Zhang C P. Journal of Guizhou University (Natural Science),2002(4),354(in Chinese).
王彦卿, 张朝平. 贵州大学学报(自然科学版), 2002 (4), 354.
4 Wagner G W, Procell L R, Oconnor R J, et al. Journal of the American Chemical Society, 2001, 123(8), 1636.
5 Stengl V, Kralova D, Oplustil F, et al. Microporous and Mesoporous Materials, 2012, 156, 224.
6 Sţastny M, Tolasz J, Stengl V, et al. Applied Surface Science, 2017, 412, 19.
7 Štengl V, Grygar T M, Bludská J, et al. Materials Research Bulletin, 2012, 47(12), 4291.
8 Štengl V, Bludska J, Oplustil F, et al. Materials Research Bulletin, 2011, 46(11), 2050.
9 Pandey P, Singh B. Microporous & Mesoporous Materials, 2007, 106(1), 256.
10 Stengl V, Grygar T, Oplustil F, et al. Journal of Hazardous Materials, 2012, 227, 62.
11 Ci Y, Wang I, Zhang X L, et al. Applied Physics, 2018, 124(11),786.
12 Stengl V, Grygar T, Oplustil F, et al. Journal of Hazardous Materials, 2011, 192(3), 1491.
13 Shen Z, Zhong J Y, Yang J C, et al. Chemical Physics Letters, 2018, 707, 31.
14 Shen Z, Zhong J Y, Chai N N, et al. Chemical Physics Letters, 2017, 678, 146.
15 Henych J, Stengl V, Mattsson A, et al. Journal of Hazardous Materials, 2018, 359, 482.
16 Mahato T H, Singh B, Srivastava A K, et al. Journal of Hazardous Materials, 2011, 192(3), 1890.
17 Praveen K J, Prasad G K, Ramacharyulu P V R K, et al. Materials Chemistry and Physics, 2013, 142(2-3), 484.
18 Štengl V, Houšková V, Bakardjieva S, et al. Materials Characterization, 2010, 61(11), 1080.
19 Chen W M, Ran R, Weng D, et al. Journal of Materials Science, 2015, 50(19), 6268.
20 Praveen K J, Prasad G K. Materials Chemistry and Physics, 2016, 173, 168.
21 Kumar J P, Prasad G K. Journal of Alloys & Compounds,2016,692,833.
22 Mitchell J K, Arcibar O J A, Bandosz T J. Applied Surface Science,2016, 390, 735.
23 Janos P, Henych J, Pelant O, et al. Journal of Hazardous Materials, 2016, 304, 259.
24 Henych J, Janoš P, Kormunda M, et al. Arabian Journal of Chemistry, 2019, 12(8), 4258.
25 Pilařová V, Trögl J, Kormunda M, et al. Chemical Engineering Journal, 2015,262,747.
26 Janos P, Kuran P, Kormunda M, et al. Journal of Rare Earths, 2014, 32(4), 360.
27 Wagner G W, Procell L R, O'connor R J, et al. Journal of the American Chemical Society, 2001, 123(8), 1636.
28 Henych J, Stengl V, Mattsson A, et al. Journal of Hazardous Materials, 2018, 359(5), 482.
29 Mahato T H, Prasad G K, Singh B, et al. Microporous and Mesoporous Materials, 2010, 132(1), 15.
30 Prasad G K, Mahato T H, Singh B, et al. AIChE Journal, 2007, 53(6), 1562.
31 Prasad G K, Mahato T H, Singh B, et al. Journal of Hazardous Mate-rials, 2007, 149(2), 460.
32 Mahato T H, Prasad G K, Singh B, et al. Journal of Hazardous Mate-rials, 2009, 166(2-3), 1545.
33 Singh B, Mahato T H, Srivastava A K, et al. Journal of Hazardous Materials, 2011, 190(1-3), 1053.
34 Prasad G K, Mahato T H, Singh B, et al. AIChE Journal, 2008, 54(11), 2957.
35 Prasad G K, Singh B, Ganesan K, et al. Journal of Hazardous Materials, 2009, 167(1), 1192.
36 Kiani A, Dastafkan K. Journal of Colloid and Interface Science, 2016, 478, 271.
37 Mahato T H, Prasad G K, Singh B, et al. Journal of Hazardous Mate-rials, 2009, 165(1), 928.
38 Wagner G W, Koper O, Lucas E, et al. Journal of Physical Chemistry B, 2000, 104(21), 5118.
39 Wagner G W, Bartram P W, Koper O, et al. Journal of Physical Chemistry B, 1999, 103(16), 3225.
40 Alifanti M, Delmon B, Baps B, et al. Chemistry of Materials, 2003, 15(2), 395.
41 Šubrt J, Štengl V, Bakardjieva S, et al. Powder Technology, 2006, 169(1), 33.
42 Martin M E, Narske R M, Klabunde K J. Microporous and Mesoporous Materials, 2005, 83(1-3), 47.
43 Saxena A, Srivastava A K, Sharma A, et al. Journal of Hazardous Materials, 2009, 169(1-3), 419.
44 Medine G M, Zaikovskii V, Klabunde K J. Journal of Materials Chemistry, 2004, 14(4), 757.
45 Saxena A, Srivastava A K, Singh B, et al. Journal of Hazardous Mate-rials, 2010, 175(1), 795.
46 Prasad G K, Ramacharyulu P V R K, Batra K, et al. Journal of Hazar-dous Materials, 2010, 183(1), 847.
47 El S Y, Abu N, Kanan S. Vibrational Spectroscopy, 2014, 75, 78.
48 Verma M, Chandra R, Gupta V K. Journal of Molecular Liquids, 2016, 215, 285.
49 Verma M, Gupta V K, Dave V, et al. Journal of Colloid Interface Science, 2015, 438, 102.
50 Gupta V K. Journal of Colloid & Interface Science, 2015, 453, 60.
51 Verma M, Chandra R, Gupta V K. Journal of Environmental Chemical Engineering, 2016, 4(1), 219.
52 Tang H R, Cheng Z X, Zhu H Y, et al. Applied Catalysis B, Environmental, 2008, 79(4), 323.
53 Kiani A, Dastafkan K. Journal of Colloid Interface Science,2016,478,271.
54 Singh B, Mahato T H, Srivastava A K, et al. Journal of Hazardous Materials, 2011, 190(1-3), 1053.
55 Stengl V, Bludska J, Oplustil F, et al. Materials Research Bulletin, 2011, 46(2011), 2050.
56 Dadvar S, Tavanai H, Morshed M, et al. Separation & Purification Technology, 2013, 114(32), 24.
57 Yang Y C, Szafraniec L L, Beaudry W T, et al. The Journal of Organic Chemistry, 1988, 53(14), 3293.
58 Yang Y C, Baker J A, Ward J R. Chemical Reviews, 1992, 92(8), 1729.
59 Prasad G K, Singh B, Ganesan K, et al. Journal of Hazardous Materials, 2009, 167(1-3), 1192.
60 Saxena A, Singh B, Srivastara A K, et al. Microporous and Mesoporous Materials, 2008,115(3),364.
61 Verma M, Gupta V K, Dave V, et al. Journal of Colloid and Interface Science, 2015, 438, 102.
62 Verma M, Chandra R Gupta V K. Journal of Colloid and Interface Science, 2015, 453, 60.
63 Gupta V K, Jain R, Mittal A, et al. Materials Science and Engineering: C, 2012, 32(1), 12.
64 Gupta V K,Srivastava S K,Sharma D M. Waste Management, 1998, 17(8), 517.
65 Saleh T A, Gupta V K. Environmental Science and Pollution Research, 2012, 19(4), 1224.
66 Gupta V K, Agarwal S, Saleh T A. Journal of Hazardous Materials, 2011, 185(1), 17.
67 Gupta V K, Ali I, Saleh T A, et al. RSC Advances, 2012, 2(16), 6380.
68 Mittal A, Mittal J, Malviya A, et al. Colloid and Interface Science, 2009, 340(1), 16.
69 Gupta V K, Jain R, Nayak A, et al. Materials Science and Engineering, C, 2011, 31(5), 1062.
70 Gupta V K, Nayak A. Chemical Engineering Journal, 2012, 180, 81.
71 Jain R, Gupta V K, Jadon N, et al. Anal Biochem, 2010, 407(1), 79.
72 Khani H, Rofouei M K, Arab P, et al. Journal of Hazardous Materials, 2010, 183(1), 402.
73 Saleh T A, Gupta V K. Colloid and Interface Science,2012,371(1),101.
74 Mawhinney D B, Rossin J A, Gerhart K, et al. Langmuir, 1999, 15(14), 4789.
75 Verma M, Chandra R, Guptaacd V K. Colloid and Interface Science 2015, 4(453), 60.
76 Mahato T H, Prasad G K, Singh B, et al. Journal of Hazardous Mate-rials, 2009, 166(2-3), 1545.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[5] 陈东方, 武海鹏, 梁钒, 周骐, 宋显刚, 田爱琴. 六边形Al-复合材料薄壁混杂管准静态压缩实验和吸能机理分析[J]. 材料导报, 2022, 36(Z1): 22020120-6.
[6] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[7] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[8] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[9] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[10] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[11] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[12] 杨智勇, 臧家俊, 韩超, 李卫京, 李志强. SiCp/A356材料MAO膜与合成材料摩擦副的摩擦稳定性研究[J]. 材料导报, 2022, 36(9): 21030164-8.
[13] 刘宇, 李彬, 丁二卯, 雷小丽, 宁平. 新型氧化剂材料脱硫脱硝的研究进展[J]. 材料导报, 2022, 36(9): 20070192-8.
[14] 戎鑫, 李建军, 但宏兵, 薛长国, 高明, 李梦, 刘银. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 21020032-7.
[15] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed