Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20090218-8    https://doi.org/10.11896/cldb.20090218
  无机非金属及其复合材料 |
石墨烯基纳米复合薄膜及其摩擦学研究进展
陈丽1, 黄银1,2, 于元烈2
1 兰州理工大学石油化工学院,兰州 730050
2 中国科学院兰州化学物理研究所材料磨损与防护科技创新重点实验室,兰州 730000
Research Progress on Tribology of Graphene-based Nanocomposite Films
CHEN Li1, HUANG Yin1,2, YU Yuanlie2
1 School of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
2 Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
下载:  全 文 ( PDF ) ( 5066KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微纳制造技术的快速发展推动着微电子机械系统(MEMS)的设计逐渐转向微型化、智能化和集成化。由于微构件尺寸减小、表面效应增强,粘着、纳米摩擦和磨损等问题严重影响着MEMS的可靠性和耐久性。因为微纳系统活动构件的间隙处于纳米量级,常规的液体润滑剂将导致摩擦副表面产生很大的粘滞力和剪切力,所以液体润滑剂不再适用于微纳系统。因此,通过表面改性,在微纳器件表面涂覆/沉积具有良好力学性能及化学稳定性的薄膜,成为提高微构件系统稳定性的有效手段。
石墨烯具有优异的力学性能和结构刚性,同时具有低摩擦以及良好的化学稳定性,有望作为纳米润滑材料构筑石墨烯纳米润滑薄膜及石墨烯基纳米复合润滑薄膜,减小微纳尺度下接触表面的粘着、摩擦和磨损,提高MEMS的耐久性和稳定性。目前,在石墨烯和石墨烯基润滑薄膜的制备及其微纳摩擦学性能方面已取得了许多重要的研究结果。
本文对近年来石墨烯纳米润滑薄膜和石墨烯基纳米复合润滑薄膜的制备进行了系统的梳理,并对其微纳摩擦学性能进行了总结和分析,提出了石墨烯基纳米复合薄膜作为润滑薄膜仍需解决的关键问题,并对石墨烯基纳米复合薄膜的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈丽
黄银
于元烈
关键词:  石墨烯  复合材料  润滑薄膜  纳米摩擦    
Abstract: The rapid development of micro-nano manufacturing technology has greatly promoted the miniaturization, intellectualization, and integration of microelectromechanical systems (MEMS). The microscopic scale and enhanced surface effect cause serious adhesion, friction and wear, which seriously affect the reliability and durability of MEMS. Unfortunately, these miniaturized devices cannot be lubricated with conventional liquid lubricants, because the viscous force and shear stress dramatically increase in the nanoscale gaps between friction pairs. So, surface modification, creating films with excellent mechanical properties and chemical stability on the surface of miniaturized devices, is considered to be effective strategy to resolve the tribological problems of microdevices.
Graphene exhibits good chemical stability, excellent mechanical and lubricating properties, which can be used to prepare graphene nano-lubricating films and graphene-based nanocomposite lubricating films. These films could improve the adhesion, stiction, and friction problems, and increase the stability and durability of MEMS. In recent years, many important results have been obtained on the preparation and micro-/nano-tribological properties of graphene lubricating films and graphene-based lubricating films.
In this paper, the preparation of graphene nano-lubricating films and graphene-based nanocomposite lubricating films are systematically introduced, and the micro-/nano-tribological properties of these films are summarized. It is pointed out that the problem existed now and more efforts should be made with respect to the research on graphene-based nanocomposite lubricating films.
Key words:  graphene    composite    lubricating film    nano friction
发布日期:  2022-06-09
ZTFLH:  TQ127.11  
基金资助: 国家自然科学基金(51765036)
通讯作者:  chenli1981@163.com   
作者简介:  陈丽,兰州理工大学副教授、硕士研究生导师。2004年毕业于西北师范大学,获化学专业学士学位;2010年毕业于中国科学院兰州化学物理研究所,获物理化学专业博士学位;同年进入兰州理工大学石油化工学院从事教学、科研工作。目前主要研究方向为纳米润滑薄膜、材料的腐蚀与磨损等。近年来作为负责人主持国家自然科学基金项目两项,甘肃省自然科学基金、兰州理工大学红柳青年教师培养计划项目、兰州理工大学科研发展基金各一项。先后发表研究论文30余篇,授权国家发明专利三项,主编教材一部,副主编教材一部,参编英文学术专著一部。
引用本文:    
陈丽, 黄银, 于元烈. 石墨烯基纳米复合薄膜及其摩擦学研究进展[J]. 材料导报, 2022, 36(11): 20090218-8.
CHEN Li, HUANG Yin, YU Yuanlie. Research Progress on Tribology of Graphene-based Nanocomposite Films. Materials Reports, 2022, 36(11): 20090218-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090218  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20090218
1 Judy J W. Smart Materials and Structures, 2001, 10(6), 1115.
2 Sun H, Yin M, Wei W, et al.Microsystem Technologies, 2018, 24(7), 2853.
3 Palaparthy V S, Kalita H, Surya S G, et al.Sensors and Actuators B-Chemical, 2018, 273, 1660.
4 Wang W Y, Wang Y L, Bao H F, et al.Sensors and Actuators A: Physical, 2002, 97(1), 486.
5 Yang M M, Zhang Z Z, Yuan J Y, et al.Friction, 2019, 8(2), 335.
6 Wang T, Huang L, Handschuh-Wang S, et al.Applied Surface Science, 2018, 456, 75.
7 Duan Z W, Qiao L, Chai L Q, et al. Applied Surface Science, 2019, 465(28), 564.
8 Li Z C, Guan X Y, Wang Y X, et al.Surface & Coatings Technology, 2017, 321, 350.
9 Yan X B, Xu T, Yang S R, et al.Tribology, 2003, 23(3), 169(in Chinese).
阎兴斌, 徐洮, 杨生荣, 等. 摩擦学学报, 2003, 23(3), 169.
10 Voevodin A A, O′Neill J P, Zabinski J S.Tribology Letters, 1999, 6(2), 75.
11 Evans K J, Yilmaz A, Day S D,et al. JOM, 2005, 57(1), 56.
12 Song H J, Li N.Applied Physics A: Materials Science & Processing, 2011, 105(4), 827.
13 Xie H, Jiang B, He J, et al.Tribology International, 2016, 93, 63.
14 Zhang Y, Li C, Jia D, et al. International Journal of Machine Tools & Manufacture, 2015, 99, 19.
15 Liu D, Zhao W, Liu S, et al. Surface & Coatings Technology, 2016, 286, 354.
16 Lu X L, Liu X B, Yu P C, et al. Optics & Laser Technology, 2016, 78, 87.
17 Yehia H M, Abu-Oqail A, Elmaghraby M A, et al.Journal of Composite Materials, 2020, 54(23), 3435.
18 Xue Y, Yang B P, Zhang B, et al. Materials Reports A: Review Papers, 2017, 31(3), 1(in Chinese).
薛勇, 杨保平, 张斌, 等. 材料导报:综述篇, 2017, 31(3), 1.
19 Tseng W S, Chen Y C, Hsu C C, et al.Nanotechnology, 2020, 31(33), 1.
20 Wu H Y, Lei Y, Wu H X, et al. Materials Reports A: Review Papers, 2015, 29(8), 65(in Chinese).
吴红艳, 雷勇, 吴红霞, 等. 材料导报:综述篇, 2015, 29(8), 65.
21 Bianco A, Cheng H M, Enoki T, et al. Carbon, 2013, 65(6), 1.
22 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
23 Geim A K, Novoselov K S.Nature Materials, 2007, 6, 183.
24 Zhu W Q, Quan H Y, Peng S S, et al. Materials Reports A: Review Papers, 2020, 34(6), 9(in Chinese).
朱武青, 全海燕, 彭叔森, 等. 材料导报:综述篇, 2020, 34(6), 9.
25 Sun J L, Du S N. RSC Advances, 2019, 9, 40642.
26 Yi D H, Feng Y H, Zhang J F, et al. Materials Reports A: Review Papers, 2020, 34(5), 86(in Chinese).
仪登豪, 冯英豪, 张锦芳, 等. 材料导报:综述篇, 2020, 34(5), 86.
27 Mattevi C, Kim H, Chhowalla M.Journal of Materials Chemistry, 2011, 21, 3324.
28 Zhang Y, Zhang L, Zhou C.Accounts of Chemical Research, 2013, 46(10), 2329.
29 Seah C M, Chai S P, Mohamed A R.Carbon, 2014, 70, 1.
30 Won M S, Penkov O V, Kim D E. Carbon, 2013, 54, 472.
31 Kim K S, Lee H J, Lee C, et al. ACS Nano, 2011, 5(6), 5107.
32 Grachova Y, Vollebregt S, Lacaita A L,et al. Procedia Engineering, 2014, 87, 1501.
33 Vasic' B, Ralevic' U, Zobenica K C, et al. Applied Surface Sicence, 2019, 509, 144792.
34 Wang M, Duong L D, Mai N T, et al. ACS Applied Materials & Interfaces, 2015, 7(2), 1348.
35 Chen J, Wu J, Ge H, et al.Composites Part A, 2016, 82, 141.
36 Wang S Y, Pei B, Zhao X S, et al. Nano Energy, 2013, 2(4), 530.
37 Sheng K, Sun Y, Li C,et al. Scientific Reports, 2012, 2, 247.
38 Wang M, Duong L D, Oh J S, et al.ACS Applied Materials & Interfaces, 2014, 6(3), 1747.
39 Jiang J J, Yao X M, Xu C M, et al. Journal of the Electrochemical Society, 2016, 163(5), 133.
40 Akhavan O, Ghaderi E, Rahighi R.ACS Nano, 2012, 6(4), 2904.
41 Akhavan O, Ghaderi E, Rahighi R, et al.Carbon, 2014, 79, 654.
42 Liu W W, Feng Y Q, Yan X B, et al. Advanced Functional Materials, 2013, 23(33), 4111.
43 Liang H Y, Bu Y F, Zhang J Y, et al.ACS Applied Materials & Interfaces, 2013, 5, 6369.
44 Liu Y F, Chen X C, Li J J,et al. Carbon, 2019, 154, 266.
45 Filleter T, McChesney J L, Bostwick A, et al.Physical Review Letters, 2009, 102(8), 086102.
46 Filleter T, Bennewitz R. Physical Review B, 2010, 81, 155412.
47 Marchetto D, Held C, Hausen F, et al.Tribology Letters, 2012, 48(1), 77.
48 Marchetto D, Feser T, Dienwiebel M.Friction, 2015, 3(2), 161.
49 Wu P, Li X, Zhang C, et al.ACS Applied Materials & Interfaces, 2017, 9(25), 21554.
50 Li P F, Xu Y, Cheng X H.Surface & Coatings Technology, 2013, 232, 331.
51 Li P F, Zhou H, Cheng X H.Applied Surface Science, 2013, 285, 937.
52 Li P F, Zhou H, Cheng X.Surface & Coatings Technology, 2014, 254, 298.
53 Li P F, Liu H, Chen H Y, et al.Materials Research Express, 2019, 6(1), 016424.
54 Mungse H P, Tu Y, Ichii T, et al.Advanced Materials Interfaces, 2016, 3(3), 1500410.
55 Ou J F, Wang Y, Wang J Q, et al.The Journal of Physical Chemistry C, 2011, 115(20), 10080.
56 Ou J F, Liu L, Wang J Q, et al.Tribology Letters, 2012, 48(3), 407.
57 Liu Z H, Shu D, Li P F, et al.RSC Advances, 2014, 4(31), 15937.
58 Shu D, Zhang D B.Surface Review and Letters, 2015, 22(2), 1550023.
59 Li P F. Tribological investigation of a self-assembled graphene coating on titanium substrates. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2015(in Chinese).
李鹏飞. 钛基表面石墨烯自组装薄膜的摩擦性能研究. 博士学位论文, 上海交通大学, 2015.
60 Zhao W J, Zeng Z X, Peng S S, et al.Tribology Transactions, 2013, 56(3), 480.
61 Avilés M D, Pamies R, Sanes J, et al.Nanomaterials,2020,10(3),535.
62 Pu J B, Wan S H, Zhao W J, et al.The Journal of Physical Chemistry C, 2011, 115(27), 13275.
63 Liu X F, Pu J B, Wang L P, et al.Journal of Materials Chemistry A, 2013, 1(11), 3797.
64 Satti A, Larpent P, Gun'ko Y.Carbon, 2010, 48(12), 3376.
65 Zaman I, Kuan H C, Dai J, et al.Nanoscale, 2012, 4(15), 4578.
66 Wang Y, Ji H Y, Li L Z, et al. Tribology Letters, 2015, 60, 41.
67 Mo M T, Zhao W J, Chen Z F, et al. RSC Advances, 2015, 5, 56486.
68 Saravanan P, Selyanchyn R, Tanaka H, et al.ACS Applied Materials Interfaces, 2016, 8, 27179.
69 Saravanan P,Selyanchyn R, Tanaka H, et al. Carbon, 2017, 122, 395.
70 Saravanan P, Selyanchyn R, Tanaka H, et al. Wear, 2019, 432-433, 102920.
71 Yan C, Kim K S, Lee S K, et al.ACS Nano, 2012, 6(3), 2096.
72 Chen B B, Li X, Jia Y H, et al.Composites Part A, 2018, 115, 157.
73 Nemati N, Emamy M, Yau S, et al.RSC Advances, 2016, 6(7), 5977.
[1] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[2] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[3] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[4] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[5] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[6] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[7] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[8] 殷卫峰, 曾耀德, 杨中强, 张记明, 刘锐, 霍翠, 颜善银. 液晶高分子聚合物的类型、加工、应用综述[J]. 材料导报, 2022, 36(Z1): 21100214-5.
[9] 李辉, 朱刚, 张建卫, 康昆勇, 杜官本, 李园园, 孙呵. 二维MXene负载纳米金属及其氧化物构筑新型复合材料的研究进展[J]. 材料导报, 2022, 36(9): 20090029-9.
[10] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[11] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[12] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[13] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[14] 李格, 韩彬, 李美艳, 刘鹏, 李朝晖. 石墨烯增强金属基复合涂层的研究进展[J]. 材料导报, 2022, 36(8): 20080127-7.
[15] 张仲, 吕晓仁, 于鹤龙, 徐滨士. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 20110101-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed