Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020032-7    https://doi.org/10.11896/cldb.21020032
  无机非金属及其复合材料 |
磁化水的特性、机理及应用研究进展
戎鑫1, 李建军1,*, 但宏兵2, 薛长国1, 高明1, 李梦1, 刘银1
1 安徽理工大学材料科学与工程学院, 深部煤矿采动与灾害防控国家重点实验室,安徽 淮南 232001
2 山东大学山东省水环境污染控制与资源化重点实验室, 济南 250100
Characteristics, Mechanism and Applications of Magnetized Water: a Review
RONG Xin1, LI Jianjun1,*, DAN Hongbing2, XUE Changguo1, GAO Ming1, LI Meng1, LIU Yin1
1 State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Department of Material Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2 Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Jinan 250100, China
下载:  全 文 ( PDF ) ( 2355KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁化水因为其独特的理化性质、防垢抑垢效应、记忆效应而广受关注。磁化水研究主要集中在物性调控、磁化机理及其工业应用方面。由于磁场作用对水分子结构及其团簇结合形态有显著影响,水的磁性、表面张力、蒸发速度、沸点、电导率等宏观性质在磁化处理前后表现出明显差异。水的磁化机理涉及水分子(氢键)作用、对溶解离子的作用及对碳酸钙沉淀的作用三个方面,目前已建立了DOLLOP模型等多种磁-水作用理论模型。本文对国内外近30年来在磁化水方面的研究进展进行了综述,总结了磁化水在工农业领域的应用进展,并分析了磁化水研究领域面临的挑战及发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
戎鑫
李建军
但宏兵
薛长国
高明
李梦
刘银
关键词:  磁化水  磁化机理  工农业应用  防垢    
Abstract: Magnetic water has attracted tremendous interest due to its unique physical and chemical properties, anti-scaling effect and memory effect. The research of magnetized water mainly focuses on the physical property regulation, mechanism of magnetization and industrial applications. Since magnetic field has a significant effect on the structure and crystal-like arrangement of water molecules, the macroscopic properties of water, such as specific magnetization, surface tension, evaporation rate, boiling point and conductivity, show obvious differences before and after magnetization. The magnetization mechanism of water involves three aspects, the effect on water molecule (hydrogen bond), the effect on dissolved ions and the effect on calcium carbonate precipitation. Several theoretical models such as dynamically ordered liquid like oxyanion polymers (DOLLOP) model have been established to explain the magnetic-water interaction. This review mainly provides a summary of the global efforts and achievements in the research and application of magnetic water in industry and agriculture over the past three decades, and also gives a discussion about the challenging issues and development trends of this field.
Key words:  magnetic water    magnetization mechanism    industrial and agricultural applications    scale prevention
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  TB39  
基金资助: 安徽省自然科学基金(1908085ME127);国家自然科学基金(51374015)
通讯作者:  lijj3@aust.edu.cn   
作者简介:  戎鑫,2018年6月毕业于安徽理工大学,获得工学学士学位。现为安徽理工大学材料科学与工程学院研究生,研究方向为磁化水、磁控合成。
李建军,安徽理工大学教授,安徽理工大学矿产资源高效清洁利用学科方向带头人。2010年毕业于北京航空航天大学,获工学博士学位。主要研究方向为磁分离技术及深度水处理、矿业固废资源化、磁性功能材料。
引用本文:    
戎鑫, 李建军, 但宏兵, 薛长国, 高明, 李梦, 刘银. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 21020032-7.
RONG Xin, LI Jianjun, DAN Hongbing, XUE Changguo, GAO Ming, LI Meng, LIU Yin. Characteristics, Mechanism and Applications of Magnetized Water: a Review. Materials Reports, 2022, 36(9): 21020032-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020032  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020032
1 Gehr R, Zhai Z A, Finch J A, et al. Water Research, 1995, 29(3), 933.
2 Higashitani K, Kage A, Katamura S, et al. Journal of Colloid and Interface Science, 1993, 156(1), 90.
3 Madsen H E L. Journal of Crystal Growth, 1995, 152(1), 94.
4 Chibowski E, Hołysz L, Szcześ A, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 225(1), 63.
5 Fathi A, Mohamed T, Claude G, et al. Water Research, 2006, 40(10), 1941.
6 Liu X,Wang L,Zhang Z H, et al. Industrial Water Treatment, 2013, 33(11), 29(in Chinese).
刘鑫, 王亮, 张朝晖, 等. 工业水处理,2013, 33(11), 29.
7 Kong C X. Experimental study on the anti-scaling mechanism of the alternating electromagnetic field. Master's Thesis, Shandong University, China, 2016(in Chinese).
孔垂鑫. 交变电磁场抑垢机理实验研究. 硕士学位论文,山东大学,2016.
8 Colic M, Morse D. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154(1), 167.
9 Oshitani J, Yamada D, Miyahara M, et al. Journal of Colloid and Interface Science, 1999, 210(1), 1.
10 Holysz L, Szczes A, Chibowski E. Journal of Colloid and Interface Science, 2007, 316(2), 996.
11 Liu Z C, Song W Y, Yang L F, et al. Science Technology and Enginee-ring, 2015, 15(19), 102(in Chinese).
刘志超, 宋稳亚, 闫龙飞,等. 科学技术与工程, 2015,15(19),102.
12 Fujimura Y, Iino M. Journal of Applied Physics, 2008, 103(12), 6459.
13 Amor H, Elaoud A, Ben Salah N, et al. International Journal of Advance Industrial Engineering, 2013, 5(3), 119.
14 Toledo E J L, Ramalho T C, Magriotis Z M. Journal of Molecular Structure, 2008, 888(1-3), 409.
15 Coey J M D. Philosophical Magazine, 2012, 92(31), 3857.
16 Pang X F, Deng B. Physica B: Condensed Matter, 2008, 403(19-20), 3571.
17 Amiri M C, Dadkhah A A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 278(1), 252.
18 Frenkel M, Danchuk V, Multanen V, et al. Colloid and Interface Science Communications, 2018, 22, 38.
19 Hosseini H, Apourvari S N, Schaffie M. Journal of Petroleum Science and Engineering, 2019, 172, 280.
20 Zhang W, Li L, Zhang G, et al. Journal of Molecular Liquids, 2018, 269, 187.
21 Burgess J E, Judd S J, Parsons S A. Process Safety and Environmental Protection, 2000, 78(3), 213.
22 Han X, Peng Y, Ma Z. Optik, 2016, 127(16), 6371.
23 Chibowski E, Szcześ A. Chemosphere, 2018, 203, 54.
24 Cai R, Yang H, He J, et al. Journal of Molecular Structure, 2009, 938(1-3), 15.
25 Wang Y, Wei H, Li Z. Results in Physics, 2018, 8, 262.
26 Lee S H, Jeon S I, Kim Y S, et al. Journal of Molecular Liquids, 2013, 187, 230.
27 Coey J M D, Cass S. Journal of Magnetism and Magnetic Materials, 2000, 209, 71.
28 Mahmoud B, Yosra M, Nadia A. Separation and Purification Technology, 2016, 171, 88.
29 Colic M, Morse D. Journal of Colloid and Interface Science ,1998, 200(2), 265.
30 Colic M, Morse D. Langmuir. 1998, 14(4), 783.
31 Walrafen G E. The Journal of Chemical Physics, 1964, 40(11), 3249.
32 Kirkham M B, Structure and properties of water, Academic Press: Bur-lington, 2005.
33 Duncan A B F, Pople J A. Transactions of the Faraday Society. 1953, 49, 217.
34 Chang K T, Weng C I. Journal of Applied Physics,2006,100(4),2923.
35 Geng Y Q, Ding L, Yang S T. Journal of Henan Normal University(Na-tural Science), 2002, 30(4), 66(in Chinese).
耿延庆, 丁立, 杨书廷. 河南师范大学学报(自然科学版), 2002, 30(4), 66.
36 Iwasaka M, Ueno S. Journal of Applied Physics, 1998, 83(11), 6459.
37 Wang Y, Zhang B, Gong Z, et al. Journal of Molecular Structure, 2013, 1052, 102.
38 Jha P K, Xanthakis E, Jury V, et al. Crystals, 2017, 7(10),299.
39 Seyfi A, Afzalzadeh R, Hajnorouzi A. Chemical Engineering and Proces-sing-Process Intensification, 2017, 120, 195.
40 Maheshwary S, Patel N, Sathyamurthy N, et al. Journal of Physical Chemistry A, 2001, 105(46), 10525.
41 Demichelis R, Raiteri P, Gale J D, et al. Nature Communications, 2011, 2, 8.
42 Deng A H,Huang H M,Ji W J. Industrial Water Treatment, 2012, 32(2), 16(in Chinese).
邓爱华, 黄慧民, 姬文晋. 工业水处理, 2012, 32(2), 16.
43 Lipus L C, Dobersek D. Chemical Engineering Science, 2007, 62(7), 2089.
44 Zhang X Y,Wang W Q,Guo B, et al. Materials Reports B: Research Papers, 2019, 33(3), 965(in Chinese).
张旭昀, 王文泉, 郭斌, 等. 材料导报:研究篇, 2019, 33(3), 965.
45 Kney A D, Parsons S A. Water Research, 2006, 40(3), 517.
46 Alimi F, Tlili M, Ben Amor M, et al. Desalination,2007,206(1),163.
47 Gryta M. Separation and Purification Technology, 2011, 80(2), 293.
48 Myśliwiec D, Szcześ A, Chibowski S. Journal of Industrial and Enginee-ring Chemistry, 2016, 35, 400.
49 Simonič M, Urbancl D. Journal of Cleaner Production, 2017, 156, 445.
50 Kobe S, Dražić G, McGuiness P J, et al. Journal of Magnetism and Magnetic Materials, 2001, 236(1), 71.
51 Botello-Zubiate M E, Alvarez A, Martínez-Villafañe A, et al. Journal of Alloys and Compounds, 2004, 369(1), 256.
52 Chang M C, Tai C Y. Chemical Engineering Journal, 2010, 164(1), 1.
53 Dobersek D, Goricanec D. Energy, 2014, 77, 271.
54 Sohaili J, Shi H S, Lavania B, et al. Journal of Cleaner Production, 2016, 139, 1393.
55 Parsons S A, Judd S J, Stephenson T, et al. Process Safety and Environmental Protection, 1997, 75(2), 98.
56 Alimi F, Tlili M M, Amor M B, et al. Chemical Engineering and Processing: Process Intensification, 2009, 48(8), 1327.
57 Latva M, Inkinen J, Rämö J, et al. Journal of Water Process Enginee-ring, 2016, 9, 215.
58 Baker J S, Judd S J, Parsons S A. Desalination, 1997, 110(1), 151.
59 Kobe S, Dražić G, Cefalas A C, et al. Crystal Engineering, 2002, 5(3-4), 243.
60 Knez S, Pohar C. Journal of Colloid Interface Science, 2005, 281(2), 377.
61 Tai C Y, Wu C K, Chang M C. Chemical Engineering Science, 2008, 63(23), 5606.
62 Busch K W, Busch M A. Desalination, 1997, 109(2), 131.
63 Gabrielli C, Jaouhari R, Maurin G, et al. Water Research, 2001, 35(13), 3249.
64 Zlotopolski V. International Soil and Water Conservation Research, 2017, 5(4), 253.
65 Surendran U, Sandeep O, Joseph E J. Agricultural Water Management, 2016, 178, 21.
66 Sudsiri C J, Jumpa N, Kongchana P, et al. Scientia Horticulturae, 2017, 220, 66.
67 El-Shafik El-Zawily A, Meleha M, El-Sawy M, et al. Ecotoxicol Ecotoxicology and Environmental Safety, 2019, 181, 248.
68 Selim D A H, Nassar R M A, Boghdady M S, et al. Plant Physiol Biochem, 2019, 135, 480.
69 Liu X, Wang L, Wei Y, et al. Scientia Horticulturae, 2020, 262, 109056.
70 Zhao S, Yang Z, Zhang L, et al. Journal of Food Engineering, 2018, 217, 24.
71 Zhang L, Yang Z, Deng Q. Journal of Food Engineering, 2021, 288, 110149.
72 Ghorbani S, Ghorbani S, Tao Z, et al. Construction and Building Mate-rials, 2019, 197, 280.
73 Wei H, Wang Y, Luo J. Construction and Building Materials, 2017, 147, 91.
74 Barham W S, Albiss B, Latayfeh O. Journal of Building Engineering, 2021, 33, 101544.
75 Ghorbani S, Sharifi S, Rokhsarpour H, et al. Construction and Building Materials, 2020, 248, 118660.
[1] 刘璐, 王李波, 刘大荣, 胡前库, 周爱国. 二维纳米材料在柔性压阻传感器中的应用研究进展[J]. 材料导报, 2022, 36(4): 20020137-10.
[2] 马驰, 王连慧, 潘崇祥, 刘紫婷, 王娜, 史颖. 泡孔聚合物压电材料的研究进展[J]. 材料导报, 2021, 35(7): 7199-7204.
[3] 牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
[4] 王永宝, 原元, 赵人达, 张晋杰. 赤泥地聚物混凝土力学性能研究现状及发展趋势[J]. 材料导报, 2020, 34(15): 15102-15109.
[5] 王兰馨, 姚山, 温斌. 第一性原理计算Fe含量对高熵合金AlFexTiCrZnCu力学性能的影响[J]. 材料导报, 2019, 33(Z2): 356-359.
[6] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[7] 张大旺,王栋民. 地质聚合物混凝土研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1519-1527.
[8] 马凤森,喻炎,章捷,陈海波. 生物材料细胞毒性评价研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 76-85.
[9] 何雄, 孙志刚. 非磁性半导体磁阻效应物理模型研究*[J]. 《材料导报》期刊社, 2017, 31(17): 6-11.
[10] 郭凯, 于海龙, 唐恩凌, 王猛, 贺丽萍, 刘淑华. 钛表面等离子体电解氧化制备的Ca-P-Si生物活性陶瓷膜的电化学性能*[J]. 《材料导报》期刊社, 2017, 31(14): 61-66.
[11] 赵嘉兰, 王悦敏, 牛亚伟, 董晓婷, 秦凌浩. 内源性外泌体作为药物递释系统的研究进展*[J]. CLDB, 2017, 31(13): 160-165.
[12] 纪志永, 黄智辉, 袁俊生, 李非, 周俊奇. 基于离子交换机理的尖晶石型LiMn2O4脱/嵌锂模拟*[J]. 《材料导报》期刊社, 2017, 31(12): 131-135.
[13] 王志勇, 蔡志祥, 刘国承, 孙智龙, 张铁. HAP-TCP复合生物陶瓷浆料的激光3D打印及性能研究[J]. 材料导报, 2021, 35(Z1): 104-107.
[14] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed