Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 20080182-8    https://doi.org/10.11896/cldb.20080182
  高分子与聚合物基复合材料 |
蛋白质压电材料的研究进展
李子晗1, 赵超1, 王闻宇1, 金欣2, 牛家嵘1, 朱正涛1,3, 林童1,4
1 天津工业大学纺织科学与工程学院,天津 300387
2 天津工业大学材料科学与工程学院,省部共建分离膜与膜过程国家重点实验室,天津 300387
3 美国南达科他矿业理工学院化学与应用生物系,拉皮德城 SD57701
4 澳大利亚迪肯大学前沿纤维研究与创新中心,吉朗 VIC3216
Research Progress of Protein Piezoelectric Materials
LI Zihan1, ZHAO Chao1, WANG Wenyu1, JIN Xin2, NIU Jiarong1, ZHU Zhengtao1,3, LIN Tong1,4
1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
3 Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid City SD57701, United States
4 Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
下载:  全 文 ( PDF ) ( 5955KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,压电材料的压电效应在实现环境机械能的有效利用方面展现出优异的实际应用前景,得到了研究者的广泛关注。与传统的压电材料相比,蛋白质压电材料是一种生物材料,具有良好的生物相容性、生物降解性和机械耐用性,在生物医疗和组织工程等领域显示出独特的研究价值和广阔的应用前景。然而蛋白质压电材料的压电机理和应用领域并未得到充分探索,值得深入研究。本文主要介绍了三种蛋白质压电材料(角蛋白、胶原蛋白和丝素蛋白)的压电机理、压电器件的制备及其在压电纳米发电机、生物传感器及超声换能等方面的应用研究成果,并对蛋白质压电材料所面临的挑战和未来应用前景进行了分析,为蛋白质压电材料的研究和应用提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李子晗
赵超
王闻宇
金欣
牛家嵘
朱正涛
林童
关键词:  蛋白质材料  角蛋白  胶原蛋白  丝素蛋白  生物压电材料    
Abstract: In recent years, the piezoelectric effect of piezoelectric materials has shown excellent practical application prospects in realizing the effective utilization of environmental mechanical energy, which has received extensive attention. Compared with traditional piezoelectric materials, protein piezoelectric materials are biological materials with good biocompatibility, biodegradability and mechanical durability. They have shown unique research value in the fields of biomedicine and tissue engineering. However, the piezoelectric mechanism and application fields of protein piezoelectric materials have not been fully explored, and it is worth further studying. This article mainly introduces the piezoelectric mechanism of three protein piezoelectric materials (namely keratin, collagen and silk fibroin), the preparation of piezoelectric devices and their application research in piezoelectric nanogenerators, biosensors and ultrasonic transducers. The article also looks forward to the challenges and future application prospects of protein piezoelectric materials, and provides a reference for the research and application of protein piezoelectric materials.
Key words:  protein material    keratin    collagen    silk fibroin    bio-piezoelectric material
发布日期:  2022-06-09
ZTFLH:  TB34  
基金资助: 国家自然科学基金项目(51573136);天津市自然科学基金重点项目(20JCZDJC00350)
通讯作者:  wwy-322@126.com   
作者简介:  李子晗,2018年6月毕业于西安工程大学,获得工学学士学位。现为天津工业大学纺织科学与工程学院硕士研究生,在王闻宇教授的指导下进行研究。目前主要研究领域为羊毛角蛋白压电性能。
王闻宇,天津工业大学纺织科学与工程学院教授。2006年9月毕业于天津工业大学,获得工学博士学位,主要从事纳米能源纤维、功能纤维、生物质纤维及智能可穿戴纺织品等领域的研究。
引用本文:    
李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
LI Zihan, ZHAO Chao, WANG Wenyu, JIN Xin, NIU Jiarong, ZHU Zhengtao, LIN Tong. Research Progress of Protein Piezoelectric Materials. Materials Reports, 2022, 36(11): 20080182-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080182  或          http://www.mater-rep.com/CN/Y2022/V36/I11/20080182
1 Kim D H, Shin H J, Lee H, et al. Advanced Functional Materials, 2017, 27(25), 1700341.
2 Zurbuchen A, Pfenniger A, Stahel A, et al. Annals of Biomedical Engineering, 2013, 41, 131.
3 Inaba K, Fujii I, Nakashima K, et al. Key Engineering Materials, 2013, 582,80.
4 Zhang S, Xia R, Shrout T R. Journal of Electroceramics, 2007, 19(4),251.
5 Saravanan S, Sameera D K, Moorthi A, et al. International Journal of Biological Macromolecules, 2013, 62(3), 481.
6 Guo T, Yang X, Deng J, et al. Journal of Materials Science, 2019, 30(1),91.
7 Lin C W, Chen Y K, Lu M, et al. Polymers, 2018, 10(9), 62.
8 Bo T H, Qing X Y, You W F, et al. Biomedical & Environmental Sciences: BES, 2015, 28(3),178.
9 Dou Y, Zhang B, He M, et al. Polymers, 2015, 7(3),580.
10 Dou Y, Zhang B, He M, et al. Journal of Macromolecular Science, 2014, 51(12),1009.
11 Chorsi M T, Curry E J, Chorsi H T, et al. Advanced Materials, 2019,31(1),1802084.
12 Martin A J P. Proceedings of the Physical Society, 2002, 53(53),186.
13 Tao K, Makam P, Aizen R, et al. Science, 2017, 358(6365), 9756.
14 Serrado Nunes J, Wu A, Gomes J, et al. Applied Physics A, 2009, 95(3), 875.
15 Liu H, Zhong J, Lee C, et al. Applied Physics Reviews, 2018, 5(4), 041306.
16 Xu H, Ma Z, Yang Y. Journal of Materials Science, 2014, 49(21), 7513
17 Khosa M A, Ullah A. Journal of Hazardous Materials, 2014, 278, 360.
18 Buchanan J H. Biochemical Journal, 1977, 167(2),489.
19 Yamauchi K, Yamauchi A, Kusunoki T, et al. Journal of Biomedical Materials Research, 1996, 31(4), 439.
20 Xie H, Li S, Zhang S. Green Chemistry, 2005, 7(8), 606.
21 Wedemeyer W J, Welker E, Narayan M, et al. Biochemistry, 2009,39(15),4207.
22 Mckittrick J, Chen P Y, Bodde S G, et al. JOM, 2012, 64(4), 449.
23 Jia R Y, He Y F, Wang R M, et al. Chemical Bulletin, 2008, 14(12),265(in Chinese).
贾如琰, 何玉凤, 王荣民, 等.化学通报, 2008, 14(12), 265.
24 Menefee E. Journal of the Electrochemical Society, 1972, 119(8), 227.
25 Menefee E. Annals New York Academy of Sciences, 1974, 238(1), 53.
26 Fukada E, Zimmerman R L, Mascarenhas S. Biochemical & Biophysical Research Communications, 1975, 62(2), 415.
27 Rossi D D, Domenici C, Pastacaldi P. IEEE Transactions on Electrical Insulation, 1986, 21(3),511.
28 Mitchell T W, Feughelman M. Kolloid-Zeitschrift und Zeitschrift für Polymere, 1969, 229(2),124.
29 Feughelman M, Lyman D, Menefee E, et al. International Journal of Biological Macromolecules, 2003, 33(1), 149.
30 Ren J L, Fu L H, Qiu H Y. China Leather, 2003, 23(4),17(in Chinese).
任俊莉, 付丽红, 邱化玉. 中国皮革, 2003, 23(4), 17.
31 Shoulders M D, Raines R T. Annual Review of Biochemistry, 2019, 78(1), 929.
32 Zhou L Z, Chen L, Li L, et al. Chinese Journal of Pharmaceutical Industry, 2004, 35(12),761(in Chinese).
周丽珍, 陈玲, 李琳, 等. 中国医药工业杂志, 2004, 35(12),761.
33 Fukada E, Yasuda I. Journal of the Physical Society of Japan, 1957, 12(10), 1158.
34 Fukada E, Hara K. Journal of the Physical Society of Japan, 1969, 26(3), 777.
35 Fukada E, Yasuda I. Japanese Journal of Applied Physics, 1964, 3(2), 117.
36 Chepel V F, Lavrent-Ev V V. Polymer Mechanics, 1978, 14(4), 574.
37 Ghosh S, Mei B Z, Lubkin V, et al. Journal of Biomedical Materials Research, 1998, 39(3), 453.
38 Marino A A, Spadaro J A, Fukada E, et al. Calcified Tissue Internatio-nal, 1980, 31(3),257.
39 Karem N, Lira-Olivares J, Ferreira A M, et al. Materials Science Forum, 2007, 544, 981.
40 Kalinin S V, Rodriguez B J, Shin J, et al. Ultramicroscopy, 2006, 106(4),334.
41 Minary-Jolandan M, Yu M F. Nanotechnology, 2009, 20(8),085706.
42 Hou A Q, Shi Y Q, Xie K L. Knitting Industry, 2009, 4(5),63(in Chinese).
侯爱芹, 史雅琪, 谢孔良. 针织工业, 2009, 4(5),63.
43 Wang J P, Hu J N, Bai X F, et al. Fine and Specialty Chemicals, 2004, 12(12),13(in Chinese).
王佳培, 胡建恩, 白雪芳,等. 精细与专用化学品,2004,12(12),13.
44 Koh L D, Cheng Y, Teng C P, et al. Progress in Polymer Science, 2015, 46,86.
45 Harvey E N. Science, 1939, 89(2316), 460.
46 Eiichi F. Journal of the Physical Society of Japan,1956,11(12), 1301.
47 Fukada E, Ueda H, Rinaldi R. Biophysical Journal, 1976, 16(8),911.
48 Yucel T, Cebe P, Kaplan D L. Advanced Functional Materials, 2011, 21(4), 779.
49 Zhao Y W. Composition regulation and process modification of bismuth layered ferroelectric materials. Master's Thesis, Northwest University of Technology, China, 2017(in Chinese).
赵玉伟. 铋层状铁电材料的成分调控与工艺改性研究. 硕士学位论文, 西北工业大学, 2017.
50 Miyamoto T, Sakabe H, Inagaki H. Bulletin of the Institute for Chemical Research, 1987, 65(2),109.
51 Ghosh S K, Mandal D. Nano Energy, 2016, 28(8),356.
52 Silva C C, Lima C G A, Pinheiro A G, et al. Physical Chemistry Chemical Physics, 2001, 3(18), 4154.
53 Ghosh S K, Mandal D. ACS Sustainable Chemistry & Engineering, 2017, 5,8836.
54 Kim K N, Chun J, Chae S A, et al. Nano Energy, 2015, 14,87.
55 Joseph J, Saraswathi S, Agarwal A, et al. In:2016 IEEE Sensors, Orlando, 2016, pp. 1.
56 Joseph J, Singh S G, Vanjari S R K. IEEE Sensors Journal, 2017, 17(24),8306.
57 Joseph J, Singh S G, Vanjari S R K. IEEE Electron Device Letters, 2018, 39, 1.
[1] 张钰禄, 胡谦, 叶倩, 吴佳喜, 李秋实, 苏柑锚, 杜官本, 徐开蒙. 甲壳素/丝素蛋白复合薄膜结晶特性变化研究[J]. 材料导报, 2022, 36(11): 20100142-6.
[2] 徐川, 严观福生, 孔令庆, 欧阳新华, 林乃波, 刘向阳. 基于丝素蛋白与纳米银线的柔性透明导电膜及其光电应用[J]. 材料导报, 2021, 35(2): 2064-2068.
[3] 姚玉梅, 袁湘汝, 韩鲁佳, 杨增玲, 刘贤. 畜禽骨蛋白质材料化利用的研究现状与发展趋势分析[J]. 材料导报, 2021, 35(17): 17136-17142.
[4] 陈光, 袁久刚, 向宇, 范雪荣, 王平, 王强. 羊毛角蛋白中巯基含量的测定及其应用[J]. 材料导报, 2021, 35(14): 14176-14179.
[5] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[6] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[7] 拜凤姣, 王卉, 陈晓敏, 吴晨星, 张克勤. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
[8] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[9] 王瑞瑞. 角蛋白基生物功能材料的研究现状与发展前景[J]. 材料导报, 2020, 34(21): 21199-21204.
[10] 朱逸军, 刘子同, 袁久刚, 王强, 王平. 以巯基乙酸胆碱为共溶剂的角蛋白/PVA复合膜的一浴法制备及性能[J]. 材料导报, 2020, 34(14): 14187-14190.
[11] 徐翔宇, 李弘坤, 詹达, 刘向阳. PEDOT∶PSS掺杂丝素蛋白复合薄膜的半导体性能[J]. 材料导报, 2019, 33(10): 1734-1737.
[12] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[13] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed