Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090103-5    https://doi.org/10.11896/cldb.21090103
  高分子与聚合物基复合材料 |
废弃复材树脂高值化利用:超级电容器电极应用
王赫1,2,*, 胡程文1, 王洪杰1,3, 阮芳涛1, 储长流1
1 安徽工程大学纺织服装学院,安徽 芜湖 241000
2 安徽工程大学纺织服装学院,安徽省纺织工程技术研究中心,安徽 芜湖 241000
3 安徽工程大学纺织服装学院,安徽省纺织结构复合材料国际联合研究中心,安徽 芜湖 241000
High Value Utilization of Waste Composite Resin: Supercapacitor Electrode Application
WANG He1,2,*, HU Chengwen1, WANG Hongjie1,3, RUAN Fangtao1, CHU Changliu1
1 School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, Anhui, China
2 Anhui Province Engineering and Technology Research Center of Textile, School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, Anhui, China
3 Anhui Province International Cooperation Research Center of Textile Structure Composites,School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, Anhui, China
下载:  全 文 ( PDF ) ( 7987KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,废弃碳纤维复合材料数量急剧增加,对人类的生存环境造成了严重破坏。为了实现废弃复材中树脂的高值化利用,本研究采用一步碳化法制备了废弃树脂基碳材料,研究了碳化温度对碳材料结构与性能的影响,并将碳材料制备成超级电容器电极,研究电极的电化学性能。分别采用扫描电子显微镜(SEM)、比表面积测试仪、傅里叶红外光谱仪(FTIR)、X射线光电子能谱(XPS)、拉曼测试仪(Raman)、差示扫描量热仪(DSC)和热重分析仪(TGA)对碳材料的表面形貌、孔性能、化学组分、石墨化程度以及形成原理进行了分析。结果表明:当碳化温度为800 ℃时制备的碳材料具有分级多孔的结构,孔性能和石墨化程度达到最佳,所制备的超级电容器电极表现出优异的电化学性能,在1 A/g电流密度下比电容高达299 F/g,经10 000次充放电循环后,比电容仍高达296.6 F/g,循环稳定性优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王赫
胡程文
王洪杰
阮芳涛
储长流
关键词:  树脂  碳材料  超级电容器  电极  电化学    
Abstract: Recently, the number of waste carbon fiber composites has been increasing rapidly, which causes serious damage to human living environment. In order to realize the high-value utilization of resin in waste composites, in this research, waste resin-based carbon materials were prepared by one-step carbonization method. And the effects of carbonization temperature on the structure and properties of carbon materials were studied. Meanwhile, the electrochemical performance of supercapacitor electrodes prepared by the carbon materials was investigated. The surface morphology, pore properties, chemical composition, graphitization degree and formation principle of carbon materials were analyzed by scanning electron microscope (SEM), specific surface area tester, fourier infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), Raman tester (Raman), differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA), respectively. The results showed that the carbon material possesses a hierarchical porous structure, and the pore properties and graphitization degree are the best under a carbonization temperature at 800 ℃. And the prepared supercapacitor electrode shows excellent electrochemical performances. The specific capacitance is as high as 299 F/g under the current density of 1 A/g, and it is as high as 296.6 F/g after 10 000 charge and discharge cycles, which indicates an excellent cycling stability.
Key words:  resin    carbon material    supercapacitor    electrode    electrochemistry
出版日期:  2023-03-25      发布日期:  2023-03-27
ZTFLH:  TB321  
基金资助: 安徽省纺织结构复合材料国际联合研究中心开放基金(2021ACTC08);安徽省高等学校纺织面料重点实验室开放基金(2021AETKL13);安徽省留学人员创新项目择优资助计划(2018LCX004)
通讯作者:  *王赫,安徽工程大学纺织服装学院讲师。2010年吉林化工学院高分子材料与工程专业本科毕业,2013年天津工业大学材料科学与工程专业硕士毕业,2020年天津工业大学纺织科学与工程专业博士毕业,毕业后到安徽工程大学工作至今。目前主要从事低维纳米碳材料及其应用等方面的研究工作。发表论文20余篇,包括Journal of Power Sources、ACS Applied Energy Materials、Polymer、《材料导报》等。owenwanghe@sina.com   
引用本文:    
王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
WANG He, HU Chengwen, WANG Hongjie, RUAN Fangtao, CHU Changliu. High Value Utilization of Waste Composite Resin: Supercapacitor Electrode Application. Materials Reports, 2023, 37(6): 21090103-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.21090103  或          https://www.mater-rep.com/CN/Y2023/V37/I6/21090103
1 Chen M F, Yu D, Zheng X Z, et al. Journal of Energy Storage, 2019, 21, 105.
2 Song Z Y, Zhu D Z, Li L C, et al. Journal of Materials Chemistry A, 2019, 7(3), 1177.
3 Wang H, Wang H J, Wang W Y, et al. Materials Reports A:Review Papers, 2018, 32(3), 730(in Chinese).
王赫, 王洪杰, 王闻宇, 等. 材料导报:综述篇, 2018, 32(3), 730.
4 He X, Zhou N R, Wang F P, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(6), 195 (in Chinese).
何潇, 周年荣, 王飞鹏, 等. 重庆理工大学学报(自然版), 2021, 35(6), 195.
5 Wang H, Wang W Y, Wang H J, et al. ACS Applied Energy Materials, 2018, 1(2), 431.
6 Yang Z F, Tian J R, Yin Z F, et al. Carbon, 2019, 141, 467.
7 Yan T, Wang K, Wang X T. Journal of Porous Materials, 2021, 28, 1187.
8 Zhang J L, Zhang W F, Zhang H, et al. Materials Letters, 2017, 206, 67.
9 Dong X X, Wang J Y, Yan M F, et al. Ceramics International, 2021, 47(5), 5998.
10 Yao S S, Jin F L, Rhee K Y, et al. Composites Part B: Engineering, 2018, 142, 241.
11 Kwon Y J, Kim Y, Jeon H, et al. Composites Part B: Engineering, 2017, 122, 23.
12 Wang J, Xu F, Jin H Y, et al. Advanced Materials, 2017, 29, 1605838.
13 Song C C, Wang F, Liu Y, et al. Polymer Composites, 2017, 38(11), 2544.
14 Wang D W, Wang B M, Duan C B. Synthetic Fiber, 2019, 48(3), 49 (in Chinese).
王大伟, 王宝铭, 段长兵. 合成纤维, 2019, 48(3), 49.
15 Jawad A H, Bardhan M, Islam M A, et al. Surfaces and Interfaces, 2020, 21, 100688.
16 Dutta S, Bhaumik A, Wu K C W, Energy & Environmental Science, 2014, 7, 3574.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 易宗琳, 邸会芳, 王振兵, 苏方远, 陈成猛. 高电压双电层超级电容器电解质的研究进展[J]. 材料导报, 2025, 39(9): 24030012-8.
[3] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[4] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[5] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[6] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[7] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[8] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[9] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[10] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[11] 刘海龙, 芶立. 用于ECG电极的长期稳定性评估方法:以皮革电极为例[J]. 材料导报, 2025, 39(4): 23100257-6.
[12] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[13] 张志春, 王晓庆, 吴明海, 杨凯. 加热模式对Cu-Al微电阻点焊过程中电极烧损行为的影响[J]. 材料导报, 2025, 39(4): 23100261-9.
[14] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[15] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed