Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21090103-5    https://doi.org/10.11896/cldb.21090103
  高分子与聚合物基复合材料 |
废弃复材树脂高值化利用:超级电容器电极应用
王赫1,2,*, 胡程文1, 王洪杰1,3, 阮芳涛1, 储长流1
1 安徽工程大学纺织服装学院,安徽 芜湖 241000
2 安徽工程大学纺织服装学院,安徽省纺织工程技术研究中心,安徽 芜湖 241000
3 安徽工程大学纺织服装学院,安徽省纺织结构复合材料国际联合研究中心,安徽 芜湖 241000
High Value Utilization of Waste Composite Resin: Supercapacitor Electrode Application
WANG He1,2,*, HU Chengwen1, WANG Hongjie1,3, RUAN Fangtao1, CHU Changliu1
1 School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, Anhui, China
2 Anhui Province Engineering and Technology Research Center of Textile, School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, Anhui, China
3 Anhui Province International Cooperation Research Center of Textile Structure Composites,School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, Anhui, China
下载:  全 文 ( PDF ) ( 7987KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,废弃碳纤维复合材料数量急剧增加,对人类的生存环境造成了严重破坏。为了实现废弃复材中树脂的高值化利用,本研究采用一步碳化法制备了废弃树脂基碳材料,研究了碳化温度对碳材料结构与性能的影响,并将碳材料制备成超级电容器电极,研究电极的电化学性能。分别采用扫描电子显微镜(SEM)、比表面积测试仪、傅里叶红外光谱仪(FTIR)、X射线光电子能谱(XPS)、拉曼测试仪(Raman)、差示扫描量热仪(DSC)和热重分析仪(TGA)对碳材料的表面形貌、孔性能、化学组分、石墨化程度以及形成原理进行了分析。结果表明:当碳化温度为800 ℃时制备的碳材料具有分级多孔的结构,孔性能和石墨化程度达到最佳,所制备的超级电容器电极表现出优异的电化学性能,在1 A/g电流密度下比电容高达299 F/g,经10 000次充放电循环后,比电容仍高达296.6 F/g,循环稳定性优异。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王赫
胡程文
王洪杰
阮芳涛
储长流
关键词:  树脂  碳材料  超级电容器  电极  电化学    
Abstract: Recently, the number of waste carbon fiber composites has been increasing rapidly, which causes serious damage to human living environment. In order to realize the high-value utilization of resin in waste composites, in this research, waste resin-based carbon materials were prepared by one-step carbonization method. And the effects of carbonization temperature on the structure and properties of carbon materials were studied. Meanwhile, the electrochemical performance of supercapacitor electrodes prepared by the carbon materials was investigated. The surface morphology, pore properties, chemical composition, graphitization degree and formation principle of carbon materials were analyzed by scanning electron microscope (SEM), specific surface area tester, fourier infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), Raman tester (Raman), differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA), respectively. The results showed that the carbon material possesses a hierarchical porous structure, and the pore properties and graphitization degree are the best under a carbonization temperature at 800 ℃. And the prepared supercapacitor electrode shows excellent electrochemical performances. The specific capacitance is as high as 299 F/g under the current density of 1 A/g, and it is as high as 296.6 F/g after 10 000 charge and discharge cycles, which indicates an excellent cycling stability.
Key words:  resin    carbon material    supercapacitor    electrode    electrochemistry
发布日期:  2023-03-27
ZTFLH:  TB321  
基金资助: 安徽省纺织结构复合材料国际联合研究中心开放基金(2021ACTC08);安徽省高等学校纺织面料重点实验室开放基金(2021AETKL13);安徽省留学人员创新项目择优资助计划(2018LCX004)
通讯作者:  *王赫,安徽工程大学纺织服装学院讲师。2010年吉林化工学院高分子材料与工程专业本科毕业,2013年天津工业大学材料科学与工程专业硕士毕业,2020年天津工业大学纺织科学与工程专业博士毕业,毕业后到安徽工程大学工作至今。目前主要从事低维纳米碳材料及其应用等方面的研究工作。发表论文20余篇,包括Journal of Power Sources、ACS Applied Energy Materials、Polymer、《材料导报》等。owenwanghe@sina.com   
引用本文:    
王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
WANG He, HU Chengwen, WANG Hongjie, RUAN Fangtao, CHU Changliu. High Value Utilization of Waste Composite Resin: Supercapacitor Electrode Application. Materials Reports, 2023, 37(6): 21090103-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090103  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21090103
1 Chen M F, Yu D, Zheng X Z, et al. Journal of Energy Storage, 2019, 21, 105.
2 Song Z Y, Zhu D Z, Li L C, et al. Journal of Materials Chemistry A, 2019, 7(3), 1177.
3 Wang H, Wang H J, Wang W Y, et al. Materials Reports A:Review Papers, 2018, 32(3), 730(in Chinese).
王赫, 王洪杰, 王闻宇, 等. 材料导报:综述篇, 2018, 32(3), 730.
4 He X, Zhou N R, Wang F P, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(6), 195 (in Chinese).
何潇, 周年荣, 王飞鹏, 等. 重庆理工大学学报(自然版), 2021, 35(6), 195.
5 Wang H, Wang W Y, Wang H J, et al. ACS Applied Energy Materials, 2018, 1(2), 431.
6 Yang Z F, Tian J R, Yin Z F, et al. Carbon, 2019, 141, 467.
7 Yan T, Wang K, Wang X T. Journal of Porous Materials, 2021, 28, 1187.
8 Zhang J L, Zhang W F, Zhang H, et al. Materials Letters, 2017, 206, 67.
9 Dong X X, Wang J Y, Yan M F, et al. Ceramics International, 2021, 47(5), 5998.
10 Yao S S, Jin F L, Rhee K Y, et al. Composites Part B: Engineering, 2018, 142, 241.
11 Kwon Y J, Kim Y, Jeon H, et al. Composites Part B: Engineering, 2017, 122, 23.
12 Wang J, Xu F, Jin H Y, et al. Advanced Materials, 2017, 29, 1605838.
13 Song C C, Wang F, Liu Y, et al. Polymer Composites, 2017, 38(11), 2544.
14 Wang D W, Wang B M, Duan C B. Synthetic Fiber, 2019, 48(3), 49 (in Chinese).
王大伟, 王宝铭, 段长兵. 合成纤维, 2019, 48(3), 49.
15 Jawad A H, Bardhan M, Islam M A, et al. Surfaces and Interfaces, 2020, 21, 100688.
16 Dutta S, Bhaumik A, Wu K C W, Energy & Environmental Science, 2014, 7, 3574.
[1] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[2] 辜敏, 吴亚珍. 阴极直接制备铜氧化物-SiO2复合薄膜及其电化学形成机理[J]. 材料导报, 2023, 37(5): 21030296-6.
[3] 饶强海, 胡光煊, 张春媚, 杨鸿斌, 胡芳馨, 郭春显. 碳基材料构建电化学传感器实现苯二酚异构体的超敏精准检测:综述[J]. 材料导报, 2023, 37(5): 21080175-17.
[4] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[5] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[6] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[7] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[8] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[9] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[10] 易聪, 王佳仪, 袁伟, 张东煜, 苏文明, 崔铮, 孙立涛. 基于褶皱结构可拉伸织物电极的制备与应用[J]. 材料导报, 2022, 36(Z1): 21110214-6.
[11] 简燕, 杨文静, 杨磊, 宋绍意, 倪婕, 何银芳. 纳米多孔硅的多片制备及其性能表征[J]. 材料导报, 2022, 36(Z1): 22010200-6.
[12] 李亮星, 朱志城, 贾孟熹, 黄茜琳. 硬质合金废料电解回收钨及W(Ⅵ)在熔盐中的电化学行为[J]. 材料导报, 2022, 36(Z1): 22010043-6.
[13] 侯朝霞, 王凯, 屈晨滢, 李思瑶, 王晓慧, 王健, 王美涵. 柔性二次电池的研究进展[J]. 材料导报, 2022, 36(9): 20070276-6.
[14] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[15] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed