Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24040177-9    https://doi.org/10.11896/cldb.24040177
  高分子与聚合物基复合材料 |
石墨烯改性热固性树脂复合材料研究进展
乐祥和1, 张晓红1,*, 乔英杰1, 白成英1, 王晓东1, 李茂源1,2, 陈为为3
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
2 北京机电工程总体设计部,北京 100875
3 北京理工大学材料学院,北京 100081
A Review on Properties of Graphene Modified Thermosetting Resin Matrix Composites
YUE Xianghe1, ZHANG Xiaohong1,*, QIAO Yingjie1, BAI Chengying1, WANG Xiaodong1, LI Maoyuan1,2, CHEN Weiwei3
1 School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2 Beijing Mechanical and Electrical Engineering Overall Design Department, Beijing 100875, China
3 Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
下载:  全 文 ( PDF ) ( 46578KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯/热固性树脂是以石墨烯粉体作为增强体、热固性树脂作为基体构成的复合材料。石墨烯粉体的添加可以显著增强热固性树脂的力学、抗烧蚀、电学、耐腐蚀和耐磨性能。石墨烯粉体的有效分散是提升热固性树脂性能的关键。利用表面改性和合理的混料方式可以显著提高石墨烯在树脂基中的分散程度。同时,如何对基体内石墨烯粉体的分散程度进行表征,也是石墨烯/热固性树脂复合材料制备的关键。本文综述了石墨烯粉体的表面改性技术、石墨烯粉体与树脂的混合方式、石墨烯粉体分散程度表征手段以及石墨烯粉体对热固性树脂复合材料宏观性能的影响和机理,并展望了石墨烯/热固性树脂复合材料未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乐祥和
张晓红
乔英杰
白成英
王晓东
李茂源
陈为为
关键词:  石墨烯粉体  热固性树脂  分散程度  宏观性能    
Abstract: Graphene/thermosetting resin composites are made of graphene powder as the reinforcement and thermosetting resin as the matrix. The addition of graphene powder significantly enhances the mechanical, ablation-resistant, electrical, corrosion-resistant, and wear-resistant properties of the thermosetting resin. Effective dispersion of graphene powder is key to improving the performance of thermosetting resins. The dispersion degree of graphene in the resin matrix can be significantly improved through surface modification and reasonable mixing methods. Moreover, characterizing the dispersion degree of graphene powder within the matrix is a core in the preparation of graphene/thermosetting resin compo-sites. This paper reviews the surface modification techniques of graphene powder, the mixing methods of graphene powder with resin, the means to characterize the dispersion degree of graphene powder, as well as the impact and mechanism of graphene powder on the macroscopic properties of thermosetting resin composites, and finally prospects the future development direction of graphene/thermosetting resin composite materials.
Key words:  graphene powder    thermosetting resin    dispersion degree    macroscopic property
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TB332  
基金资助: 国家自然科学基金青年科学基金(52203084)
通讯作者:  *张晓红,哈尔滨工程大学材料科学与化学工程学院教授、硕士研究生导师。目前主要从事树脂基复合材料、陶瓷基复合材料、结构功能一体化材料及评价等方向研究。zhangxiaohong@hrbeu.edu.cn   
作者简介:  乐祥和,哈尔滨工程大学材料科学与化学工程学院硕士研究生,在张晓红教授的指导下进行研究。目前主要从事石墨烯改性耐烧蚀酚醛树脂的性能研究。
引用本文:    
乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
YUE Xianghe, ZHANG Xiaohong, QIAO Yingjie, BAI Chengying, WANG Xiaodong, LI Maoyuan, CHEN Weiwei. A Review on Properties of Graphene Modified Thermosetting Resin Matrix Composites. Materials Reports, 2025, 39(9): 24040177-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040177  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24040177
1 Tang K H, Zhang A L, Ge T J, et al. Materials Today Communications, 2020, 26, 101879.
2 Gong H J, Wu J Q, Zhao Z H, et al. Chemical Engineering Journal, 2022, 446(4), 237392.
3 Debsharma T, Amfilochiou V, Wróblewska A A, et al. Journal of the American Chemical Society, 2022, 144(27), 12280.
4 Yan Y, Zhang J Q, Li G Z, et al. Renewable and Sustainable Energy Reviews, 2024, 189, 114009.
5 Deka B K, Hazarika A, Kang G H, et al. ACS Energy Letters, 2023, 8(2), 963.
6 Pan W H, Wang Q L, Ma J, et al. Advanced Functional Materials, 2023, 33(31), 2302311.
7 Han Z D, Zhang W Y, Song X N, et al. Chemical Engineering Journal, 2023, 474(15), 145682.
8 Su L P, Xin X, Liang M, et al. Chemical Engineering Journal, 2023, 481(1), 148300.
9 Zhang C Y, Shi B H, He J L, et al. Advanced Materials, 2023, 35(38), 2208230.
10 Li H, Zhang Q H, Meng X Z, et al. Chemical Engineering Journal, 2023, 465, 142997.
11 Tian W, Wang S, Wang C, et al. Chemical Engineering Journal, 2023, 477, 146849.
12 Geim A K, Novoselov K S. Nature Materials, 2007, 6(3), 183.
13 Nair R R, Blake P, Grigorenko A N, et al. Science, 2008, 320(5881), 1308.
14 Zhu Y W, Murali S, Cai W, et al. Advanced Materials, 2010, 22(35), 3906.
15 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
16 Chae H K, Siberio-Pérez D Y, Kim J, et al. Nature, 2004, 427(6974), 523.
17 Olowojoba G B, Kopsidas S, Eslava S, et al. Journal of Materials Science, 2017, 52(12), 7323.
18 Shabbir M, Raza Z A, Shah T H, et al. Journal of Nanostructure in Chemistry, 2022, 12, 1033.
19 Ouyang P, Lu Y K, Li Y H, et al. New Chemical Materials 2023, 51(10), 79 (in Chinese).
欧阳平, 路元坤, 李宇涵, 等. 化工新型材料, 2023, 51(10), 79.
20 Dammak A, Raouafi F, Cavanna A, et al. RSC Advances, 2022, 12(55), 36002.
21 Zhang C Y, Li W, Liu C, et al. Journal of Colloid and Interface Science, 2022, 608, 1025.
22 Chauhan D S, Quraishi M A, Ansari K R, et al. Progress in Organic Coatings, 2020, 147, 105741.
23 Amr O, Abdelmoty E, Saleh K, et al. Advanced Composites and Hybrid Materials, 2022, 5, 547.
24 Yao H Q, Hawkins S A, Sue H J. Composites Science and Technology, 2017, 146, 161.
25 Zhao S, Chang H, Chen S J, et al. European Polymer Journal, 2016, 84, 300.
26 Duan W P, Chen Y, Ma J H, et al. Composites Part B: Engineering, 2020, 189, 107878.
27 Teng C C, Ma C C M, Lu C H, et al. Carbon, 2011, 49(15), 5107.
28 Carlos S U, Soledad V L, María P S A, et al. Journal of Molecular Liquids, 2022, 357, 119104.
29 Bao C L, Guo Y Q, Song L, et al. Journal of Materials Chemistry, 2011, 21(35), 13290
30 Bortz D R, Heras H G, Martin G I. Macromolecules, 2011, 45(1), 238.
31 Qiu J J, Wang S R. Journal of Applied Polymer Science, 2010, 119(6), 3670.
32 Zaman L, Phan T T, Kuan H C, et al. Polymer, 2011, 52, 1603.
33 Yan N, Buonocore G, Lavorgna M, et al. Composites Science and Technology, 2014, 102, 74.
34 Dong B, Liu C, Zhang L, et al. RSC Advances, 2015, 5, 17140.
35 Rafiee J, Rafiee M A, Yu Z Z, et al. Advanced Materials, 2010, 22(19), 2151.
36 Wu F, Zhao W, Chen H, et al. Surface and Interface Analysis, 2016, 49(2), 85.
37 Zhang X, Wu K, Liu Y H, et al. Composites Science and Technology, 2019, 175, 135.
38 Wei J H, Qiu J J. Polymer, 2014, 55(16), 3818.
39 Valentini L, Bolognini A, Alvino A, et al. Composites Part B: Engineering, 2014, 60, 479.
40 Lin Y, Liu K H, Chen Y Z, et al. Polymer Composites, 2014, 36(10), 1775.
41 Yang M M, Zhang Z Z, Zhu X T, et al. Friction, 2015, 3(1), 72.
42 Zhang X, Wang X, Meng F, et al. Carbon, 2019, 154, 115.
43 Xiao W W, Liu Y, Guo S W. RSC Advances, 2016, 90, 1.
44 Rafiee M A, Rafiee J, Wang Z, et al. ACS Nano, 2009, 3(12), 3884.
45 Wang H, Yao S S, Jin F L, et al. Korean Journal of Chemical Engineering, 2021, 0256, 1115.
46 He L, Wang H, Yang F, et al. Thermochimica Acta, 2018, 665, 43.
47 Fan Y H, Yu S W, Wang H, et al. IOP Conference Series: Materials Science and Engineering, 2019, 634, 012044.
48 Rafiei H R, Ranjbar Z, Yari H. Progress in Organic Coatings, 2018, 125, 411.
49 Shojaee S A, Zandiatashbar A, Koratkar N, et al. Carbon, 2013, 62, 510.
50 Zhao F Y, Ling L Z, Liu L Y, et al. Journal of Raman Spectroscopy, 2016, 48(3), 432.
51 Jiang F, Zhao W, Wu Y, et al. Applied Surface Science, 2019, 479, 963.
52 Depaifve S, Federico C E, Ruch D, et al. Carbon, 2020, 167, 646.
53 Xu W Z, Wang X L, Wu X J, et al. Polymer Degradation and Stability, 2019, 165, 80.
54 Tian J P, Yang C, Yang J P, et al. Journal of Materials Science, 2021, 56(5), 3723.
55 Sandhya P K, Sreekala M S, Padmanabhan M, et al. Composites Part B: Engineering, 2018, 167, 83.
56 Chen X D, Gu L, Dang C Y, et al. Composites Communications, 2022, 31, 101111.
57 Zhao X R, Li Y, Chen W, et al. Composites Science and Technology, 2019, 171, 181.
58 Ma Y Y, Lu Y, Lu C X, et al. Composites Science and Technology, 2018, 167, 53.
59 Sabagh S, Aref-Azar A, Bahramian A R. Composites Part A: Applied Science and Manufacturing, 2017, 101, 326.
60 Chen J, Zhang W B, Liu J, et al. Journal of Thermal Analysis and Calorimetry, 2019, 135(4), 2377.
61 Huang G R, Liu H B, Yang L, et al. Carbon, 2016, 98, 734.
62 Wang X, Kalali E N, Wan J T, et al. Progress in Polymer Science, 2017, 69, 22.
63 Amirsardari Z, Mehdinavaz A R, Salavati N M, et al. Composites Part B: Engineering, 2015, 76, 174.
64 Qiu X W, Lin Z W, Zhao Y A, et al. Small, 2023, 19, 2300931.
65 Liang C B, Qiu H, Han Y Y, et al. Journal of Materials Chemistry, 2019, 7, 2725.
66 George M, Mohanty A. Materials Research Express, 2019, 6(12), 125336.
67 Zhao M Z, Zhang Z B, Shi W J, et al. Nature Communications, 2023, 14, 7447.
68 Chen G Y, Jin B, Zhang Z H, et al. ACS Applied Materials & Interfaces, 2023, 15(19), 23679.
69 Anu V, Rupam B, Chandra S T, et al. Corrosion Science, 2023, 224, 111523.
70 Zhou Z Y, Pourhashem S, Wang Z Q, et al. Chemical Engineering Journal, 2022, 439, 135765.
71 Song S J, Fan X Q, Yan H, et al. Composites Communications, 2023, 37, 101437.
72 Madani S M, Sangpour P, Vaezi M R, et al. Surface Topography: Metrology and Properties, 2022, 10(3), 035002.
73 Yuan W, Hu Q, Zhang J, et al. Metals, 2021, 11(1), 89.
74 Liu S, Gu L, Zhao H C, et al. Journal of Materials Science & Technology, 2015, 32, 425.
75 Wu T T, Yang Y J, Sun W, et al. Composites Part A: Applied Science and Manufacturing, 2022, 153, 106732.
76 Xu X Z, Yi D, Wang Z C, et al. Advanced Materials, 2017, 30(6), 1702944.
77 Wu Y H, Sun T Y, Ge T H, et al. Advanced Functional Materials, 2022, 32(13), 2110264.
78 Ding J H, Zhao H R, Yu H B. ACS Nano, 2022, 16(1), 710.
79 Zhou S F, Wang F F, Wang S Z, et al. Advanced Composites and Hybrid Materials, 2022, 5, 1280.
80 Xia H Y, Li J J, Wang K, et al. Advanced Composites and Hybrid Materials, 2022, 5, 173.
81 Meng Q, Wu H, Zhao Z, et al. Composites Part A: Applied Science and Manufacturing, 2017, 92, 42.
[1] 蒋增贵, 王欣, 刘剑辉, 刘乐平, 陈正, 莫耀鸿, 赖创林, 史才军. 甘蔗渣灰对磷酸钾镁水泥性能与水化的影响[J]. 材料导报, 2024, 38(18): 23030035-8.
[2] 李悦, 龙世儒, 王子赓, 王楠. 磷镁物质的量比对天然水镁石制备的磷酸镁水泥性能的影响[J]. 材料导报, 2024, 38(17): 23120159-6.
[3] 田小革, 李光耀, 陈功, 姚世林, 黄雪梅, 王俊杰, 陆劲州. TPU/Nano-ZnO复合改性沥青的性能研究及微观机制[J]. 材料导报, 2024, 38(16): 23050071-10.
[4] 张永芳, 艾宇昕, 刘明, 黄艳斐, 周新远, 王海斗. 热固性树脂基复合材料在表面防护领域的研究现状[J]. 材料导报, 2024, 38(1): 22070052-9.
[5] 索智, 谭祎天, 谢聪聪. 基于灰度分析的抑尘沥青混合料微宏观性能关联研究[J]. 材料导报, 2021, 35(Z1): 258-263.
[6] 李军辉, 廖至金, 李志君, 廖双泉, 于人同. 羧基官能化聚丁二烯:点击化学合成及对环氧树脂的固化机理[J]. 材料导报, 2018, 32(6): 983-986.
[7] 高瑞军, 姚燕, 吴浩, 王玲. 纳米复合粉体分散剂的制备及其分散性能[J]. 材料导报, 2018, 32(22): 3868-3874.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed