Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23100261-9    https://doi.org/10.11896/cldb.23100261
  金属与金属基复合材料 |
加热模式对Cu-Al微电阻点焊过程中电极烧损行为的影响
张志春, 王晓庆, 吴明海, 杨凯*
贵州大学现代制造技术教育部重点实验室,贵阳 550025
Effect of Heating Mode on Electrode Burning Behavior During Cu-Al Micro-resistance Spot Welding Process
ZHANG Zhichun, WANG Xiaoqing, WU Minghai, YANG Kai*
Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education, Guizhou University, Guiyang 550025, China
下载:  全 文 ( PDF ) ( 84276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了明确微电子封装Cu-Al引线键合工艺中加热模式对微电阻点焊电极烧损行为及焊接接头性能的影响,分别开展了单极性和双极性加热模式下微电阻点焊电极的全生命周期连续焊接和分阶段焊接试验。基于试验过程中电极的电、热和几何物理特性以及焊接接头的形貌和拉剪力,阐述了连续焊接过程中在不同加热模式下电极的烧损规律,定量表征了分阶段焊接过程中在不同加热模式下各焊接阶段电极的烧损量,探究了在不同加热模式下电极烧损对焊接接头性能的影响,分析了在不同加热模式下电极的失效机理。结果表明,双极性加热模式能有效延长电极使用寿命、改善焊接接头表面质量及提高焊接接头拉剪强度;两种加热模式下电极的全生命周期连续烧损均呈现初始烧损、稳定烧损和剧烈烧损三个时期;在双极性加热模式下电极各焊接阶段的烧损量均小于单极性加热模式;疲劳裂纹、表层剥离、熔滴溅射、再结晶、晶粒长大及熔化是两种加热模式下电极的主要失效形式,高温氧化、热应力循环及瞬态热冲击是电极失效的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志春
王晓庆
吴明海
杨凯
关键词:  微电阻点焊电极  加热模式  烧损规律  失效机理  接头性能    
Abstract: Full life cycle continuous welding and phased welding experiments were carried out on micro-resistance spot welding electrodes under unipolar and bipolar heating modes, respectively, in order to elucidate the effect of heating mode on the burning behavior of electrodes and the performance of welding joints in the Cu-Al wire bonding process of microelectronic packaging. The burning loss law of the electrodes under different heating modes during the continuous welding process was elaborated based on the electrical, thermal, and geometric physical properties of the electrodes during the experimental process, as well as the morphology and tensile shear force of the welded joints. It was studied how the performance of the welded joints under different heating modes was affected by electrode burning loss. Analyses were conducted on the electrode failure mechanisms under different heating conditions. The results demonstrate that the bipolar heating mode can effectively prolong increase the electrode service life and tensile share strength, surface quality, of welded joints. The electrode shows three distinct phases of continuous burning loss over the course of its life cycle under both heating modes: initial, stable, and severe burning loss. In comparison to unipolar heating mode, bipolar heating mode reduces the degree of electrode burning loss during each welding stage. The primary forms of electrode failure in both heating modes include fatigue cracks, surface peeling, droplet sputtering, recrystallization, grain development, and melting. The primary causes of electrode failure are high temperature oxidation, thermal stress cycling, and transient thermal shock.
Key words:  micro-resistance spot welding electrode    heating mode    burning law    failure mechanism    joint performance
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG438.2  
基金资助: 国家自然科学基金(52265062);贵州省科技计划项目(黔科合基础ZK[2022]一般131);贵州大学实验室开放项目(SYSKF2023-091);大学生创新创业训练计划项目(gzugc2023032;gzugc2023033)
通讯作者:  *杨凯,博士,贵州大学现代制造技术教育部重点实验室副教授、硕士研究生导师。主要从事数字化焊接装备与智能控制方面的研究。kyang3@gzu.edu.cn   
作者简介:  张志春,贵州大学现代制造技术教育部重点实验室硕士研究生,在杨凯副教授的指导下主要进行数字化焊接装备与智能控制方面的研究。
引用本文:    
张志春, 王晓庆, 吴明海, 杨凯. 加热模式对Cu-Al微电阻点焊过程中电极烧损行为的影响[J]. 材料导报, 2025, 39(4): 23100261-9.
ZHANG Zhichun, WANG Xiaoqing, WU Minghai, YANG Kai. Effect of Heating Mode on Electrode Burning Behavior During Cu-Al Micro-resistance Spot Welding Process. Materials Reports, 2025, 39(4): 23100261-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100261  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23100261
1 Cecil J, Kumar M, Lu Y, et al. International Journal of Advanced Manufacturing Technology, 2016, 83(9), 1569.
2 Li X, Wang M, Hua X M, et al. Welding & Joining, 2020 (7), 1 (in Chinese).
李旬, 王敏, 华学明, 等. 焊接, 2020(7), 1.
3 Kumar N, Ramakrishnan M S, Panchapakesan K, et al. International Journal of Advanced Manufacturing Technology, 2022, 121(9), 6581.
4 Guo Z G, Ma T J, Yang X W, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2023, 872, 144991.
5 Zeng J Q, Cao B, Yang K, et al. Journal of South China University of Technology: Natural Science Edition, 2019, 47(12), 32 (in Chinese).
曾家铨, 曹彪, 杨凯, 等. 华南理工大学学报(自然科学版), 2019, 47(12), 32.
6 Panza L, De-Maddis M, Spena P R. Journal of Manufacturing Processes, 2022, 76, 93.
7 Shuai G W, Fang P, Guo Z H, et al. Hot Working Technology, 2009, 38(13), 122 (in Chinese).
帅歌旺, 方平, 郭正华, 等. 热加工工艺, 2009, 38(13), 122.
8 Kim J W, Murugan S P, Kang N H, et al. Korean Journal of Metals and Materials, 2019, 57(11), 715.
9 Zheng L H, Zhang C Q, Zhang Q X, et al. Chian Mechanical Engineering, 2020, 31(21), 2632 (in Chinese).
郑立好, 张超群, 张庆鑫, 等. 中国机械工程, 2020, 31(21), 2632.
10 Xiao Y, Li Z, Qin F C, et al. Surface Technology, 2018, 47(1), 142 (in Chinese).
肖瑶, 李智, 覃富城, 等. 表面技术, 2018, 47(1), 142.
11 Li M F, Wang Y J, Yang S L, et, al. Journal of Manufacturing Processes, 2021, 64, 948.
12 Kawashiro F, Takao K, Kobayashi T, et, al. Microelectronics Reliability, 2019, 99, 168.
13 Wang X Q, Yang K, Li H D, et al. Transactions of the China Welding Institution, 2023, 44(1), 63 (in Chinese).
王晓庆, 杨凯, 李浩东, 等. 焊接学报, 2023, 44(1), 63.
14 Qi Y F, Wang B, Zhou J Y, et al. Rare Metal Materials and Engineering, 2018, 47(6), 1945 (in Chinese).
齐艳飞, 王波, 周景一, 等. 稀有金属材料与工程, 2018, 47(6), 1945.
15 Zhang X X, Yan Q Z. Journal of Nuclear Materials, 2014, 444(1), 428.
16 Kurishita H, Matsuo S, Arakawa H, et al. Journal of Nuclear Materials, 2009, 386, 579.
17 Chen L, Liu X, Lian Y Y. Nuclear Fusion and Plasma Physics, 2014, 34(1), 53 (in Chinese).
陈蕾, 刘翔, 练友运. 核聚变与等离子体物理, 2014, 34(1), 53.
[1] 芦燕, 余振超, 王如琦. 模拟海水环境下G20Mn5QT/Q355异种钢对接焊接接头腐蚀疲劳性能试验研究[J]. 材料导报, 2024, 38(19): 22090030-7.
[2] 吴船江, 张亮, 王曦, 陈晨, 卢晓. 陶瓷钎焊用钎料的国内外研究进展[J]. 材料导报, 2024, 38(16): 23050146-17.
[3] 杨瑞锋, 贾波, 郭敏, 武晨航, 李金岳, 郝小军, 冯庆. Ti基Ru-Ir-Ti电极在稀氯化钠溶液中的电解失效行为[J]. 材料导报, 2024, 38(13): 22110104-5.
[4] 秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
[5] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[6] 陈亚军, 李思伟, 孟宪明, 史丽婷, 肖泽文. 铝/钢异种材料电阻点焊研究进展[J]. 材料导报, 2023, 37(13): 21080153-10.
[7] 窦学铮, 蒋立武, 宋尽霞, 赵云松. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 21040222-15.
[8] 邓云飞, 安静丹, 任光辉, 魏刚. 铝合金圆波纹夹芯板对半球形体的低速冲击响应特性及失效机制[J]. 材料导报, 2022, 36(24): 21080249-6.
[9] 陈刚, 邓人钦, 薛伟, 孙瑜蔓, 田茂森, 唐啸天. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 20120018-9.
[10] 刘文超, 高峰, 曲江英, 籍少敏, 霍延平. 高镍三元正极材料失效机制与改性[J]. 材料导报, 2022, 36(21): 20100053-9.
[11] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[12] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[13] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[14] 房玉鑫, 王优强, 张平, 罗恒. SiCp/Al复合材料切削加工中颗粒失效及表面缺陷形成机理仿真研究[J]. 材料导报, 2022, 36(13): 21010146-8.
[15] 郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed