Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 22090030-7    https://doi.org/10.11896/cldb.22090030
  金属与金属基复合材料 |
模拟海水环境下G20Mn5QT/Q355异种钢对接焊接接头腐蚀疲劳性能试验研究
芦燕1,2,*, 余振超2, 王如琦2
1 天津大学滨海土木工程结构与安全教育部重点实验室,天津 300350
2 天津大学建筑工程学院,天津 300350
Experimental Research on Corrosion Fatigue Behavior of G20Mn5QT/Q355D Dissimilar Steel Butt Welded Joint in Simulated Seawater
LU Yan1,2,*, YU Zhenchao2, WANG Ruqi2
1 Key Laboratory of Coast Civil Structure Safety of China Ministry of Education, Tianjin University, Tianjin 300350, China
2 School of Civil Engineering, Tianjin University, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 37172KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属材料焊接接头的腐蚀疲劳失效往往会引发严重的工程事故。本工作对G20Mn5QT/Q355异种钢对接焊接接头在模拟海水环境下的腐蚀疲劳性能进行了研究,开展了其在3.5%NaCl溶液中的腐蚀疲劳试验,并对腐蚀疲劳断口进行了扫描电子显微镜试验,分析了其腐蚀疲劳的失效机理。揭示了在较大应力水平(>220 MPa)下,母材缺陷及焊接缺陷是导致裂纹形核的主要原因;而在较小应力水平(≤220 MPa)下,表面蚀坑是导致裂纹形核的主要原因。分别采用Stromeyer公式与基于三参数威布尔分布的模型建立了对接焊接接头的腐蚀疲劳寿命预测方法,结果表明三参数威布尔分布的腐蚀疲劳S-N曲线拟合精度更高,对实际工程疲劳设计具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
芦燕
余振超
王如琦
关键词:  G20Mn5QT铸钢  对接焊接接头  腐蚀疲劳失效机理  S-N曲线  三参数威布尔分布    
Abstract: Corrosion fatigue failure of welded joints of metal materials often leads to serious engineering accidents. In this work, the corrosion fatigue behavior of butt-welded joints of G20Mn5QT/Q355D dissimilar steel is studied, and the corrosion fatigue test in 3.5wt%NaCl solution is carried out. The corrosion fatigue fracture is observed by scanning electron microscope (SEM), and the failure mechanism of corrosion fatigue is analyzed. It is revealed that the defects (casting defects and welding defects) are the main causes of crack nucleation under the larger stress level (≥220 MPa). However, under the smaller stress level (≤220 MPa), the corrosion pit on the surface is the main cause of crack nucleation. The corrosion fatigue S-N curves of butt welded joints are established by Stromeyer expression and three-parameter Weibull distribution, respectively. The results show that the corrosion fatigue S-N curve with three-parameter Weibull distribution is more applicable in the prediction of corrosion fatigue life.
Key words:  G20Mn5QT cast steel    butt welded joint    corrosion fatigue failure mechanism    S-N curves    three-parameter Weibull distribution
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU391  
基金资助: 国家自然科学基金(52278199;52022067);天津市科技计划项目(23ZYYYJC00010)
通讯作者:  *芦燕,通信作者,教授,博士研究生导师。国家优秀青年科学基金获得者。主要从事大跨空间结构与非结构构件抗震性能及分析理论、钢结构疲劳等基础研究及工程应用推广。yanlu86@tju.edu.cn   
引用本文:    
芦燕, 余振超, 王如琦. 模拟海水环境下G20Mn5QT/Q355异种钢对接焊接接头腐蚀疲劳性能试验研究[J]. 材料导报, 2024, 38(19): 22090030-7.
LU Yan, YU Zhenchao, WANG Ruqi. Experimental Research on Corrosion Fatigue Behavior of G20Mn5QT/Q355D Dissimilar Steel Butt Welded Joint in Simulated Seawater. Materials Reports, 2024, 38(19): 22090030-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090030  或          http://www.mater-rep.com/CN/Y2024/V38/I19/22090030
1 Yan H D, Gong W J, Jin H. Journal of Southwest Jiaotong University, 2020, 55(2), 343 (in Chinese).
闫华东, 宫维佳, 靳慧. 西南交通大学学报, 2020, 55(2), 343.
2 Wang Y, Gong C, Zhang S, et al. International Journal of Steel Structures, 2010, 10(1), 99.
3 Puthli R. In: 12th International Symposium on Tubular Structures. Shanghai, 2009, pp.3.
4 Haldimann-Sturm S C, Nussbaumer A. International Journal of Fatigue, 2008, 30(3), 528.
5 Masao S. Story of Space and Structure Structural Design's Future, China Architecture & Building Press, China, 2006 (in Chinese).
斋藤公男. 空间结构的发展与展望-空间结构设计的过去·现在·未来, 中国建筑工业出版社, 2006.
6 Chen H Z, Zhang Q L, Jin H. Journal of Building Structures, 2009, 30(5), 149 (in Chinese).
陈海洲, 张其林, 靳慧. 建筑结构学报, 2009, 30(5), 149.
7 Han Q H, Wang X, Lu Y. Corrosion Science, 2018, 132, 194.
8 Hu P, Meng Q, Hu W, et al. Corrosion Science, 2016, 113, 78.
9 Huang X G, Wang Z Q. Frattura Ed Integrita Strutturale, 2019, 13(48), 481.
10 Jin H, Li J, Zhang Q L, et al. Journal of Tongji University (Natural Science), 2009, 37(1), 20(in Chinese).
靳慧, 李菁, 张其林, 等. 同济大学学报(自然科学版), 2009, 37(1), 20.
11 Zou H. Experimental study on fatigue performance of circular butt-weld on cast steel nodes. Master's Thesis, Southeast University, China, 2014 (in Chinese).
邹会. 铸钢节点环形对接焊缝的疲劳性能试验研究. 硕士学位论文, 东南大学, 2014.
12 Han Q H, Guo Q, Yin Y, et al. International Journal of Steel Structures, 2016, 16(1), 139.
13 Han Q H, Wang X, Lu Y. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(10), 2397.
14 Han Q H, Wang X, Lu Y. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(11), 2703.
15 Lu Y, Wang R Q, Han Q H, et al. Engineering Failure Analysis, 2022, 134, 105977.
16 European Committee For Standardization. DIN EN 10293 Steel castings for general engineering uses. Berlin, Germany, 2005.
17 Liu X L, Lin Y. Progress in Steel Building Structures, 2004, 6(1), 12(in Chinese).
刘锡良, 林彦. 建筑钢结构进展, 2004, 6(1), 12.
18 American Society of Testing Materials. ANSI/ASTM: E8/E8M REV A-2016. Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: American Standard; 2016.
19 Chinese Welding Society. Welding manual volume 2 material welding, China Machine Press, China, 2006 (in Chinese).
中国机械工程学会焊接学会. 焊接手册:第2卷·材料的焊接, 机械工业出版社, 2006.
20 Stromeyer C E. Proceedings of the Royal Society:A, Mathematical, Physical, and Engineering Sciences, 1914, 90, 411.
21 Goodman J. Mechanics Applied to Engineering, Longman, Green & Company, UK, 1899, pp.452.
22 Castillo E, Alfonso FC. A unified statistical methodology for modeling fatigue damage. Springer, Netherlands, 2009, pp.41.
23 Caiza P D T, Ummenhofer T. International Journal of Fatigue, 2018, 106, 70.
24 Caiza P D T, Ummenhofer T. International Journal of Fatigue, 2011, 33(12), 1533.
25 Greenwood J A, Landwehr J M, Matalas N C, et al. Water Resources Research, 1979, 15(5), 1049.
[1] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[2] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[3] 李安邦, 徐善华. 中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J]. 材料导报, 2019, 33(20): 3502-3507.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed