Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24030012-8    https://doi.org/10.11896/cldb.24030012
  无机非金属及其复合材料 |
高电压双电层超级电容器电解质的研究进展
徐桂培1, 刘浩2,3, 赖洁文1, 卢毅锋1, 黄辉1, 易宗琳2, 邸会芳2, 王振兵2, 苏方远2, 陈成猛2,*
1 广东电网有限责任公司云浮供电局,广东 云浮 527300
2 中国科学院山西煤炭化学研究所,太原 030001
3 中国科学院大学化学工程学院,北京 100049
Research Progress of Electrolytes for High-voltage Electrochemical Double-layer Capacitors
XU Guipei1, LIU Hao2,3, LAI Jiewen1, LU Yifeng1, HUANG Hui1, YI Zonglin2, DI Huifang2, WANG Zhenbing2, SU Fangyuan2, CHEN Chengmeng2,*
1 Yunfu Power Supply Bureau of Guangdong Power Grid Corporation, Yunfu 527300, Guangdong, China
2 Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
3 School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 29814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 双电层超级电容器(EDLC)因功率密度高、循环寿命长、安全可靠而应用广泛,但较低的能量密度限制了其进一步发展。提高其能量密度的最有效方法是拓宽工作电压窗口,影响EDLC工作电压窗口的主要因素是电解质在高电压下的稳定性。本文综述了近年来高电压EDLC电解质的研究进展,包括水系电解液、有机电解液、离子液体和凝胶电解质,从电解质组分设计、耐高电压的溶剂分子及阴阳离子的开发、加入功能添加剂等策略入手,着重讨论了水系“盐包水”电解液、有机体系功能添加剂、离子液体的阴阳离子调控和凝胶电解质的设计思路和原理。文末给出了高电压EDLC电解质的挑战及应对策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐桂培
刘浩
赖洁文
卢毅锋
黄辉
易宗琳
邸会芳
王振兵
苏方远
陈成猛
关键词:  超级电容器  电解质  高电压  电解质设计  功能添加剂    
Abstract: Electrochemical double-layer capacitors (EDLCs) have a wide application due to their advantages such as high power density, long cycle life, safety and reliability. However, lower energy density limits their development. To increase the energy density, widening the operating vol-tage window has been found to be the most effective method. The high voltage stability of the electrolyte is considered the main influencing factor of the operating voltage window of EDLCs. This paper provides a review of recent research progress on high voltage electrolytes for EDLCs, including aqueous electrolytes, organic electrolytes, ionic liquids, and gel electrolytes. The design of high voltage electrolyte components, including new solvent molecules and anions, and incorporating functional additives are discussed. The principles and the design of high voltage electrolyte of salt-in-water for aqueous electrolytes, functional additives for organic electrolytes, and anion/cation modulation for ionic liquids and gel electrolytes are highlighted. Finally suggestions for the issues challenging the development of high-voltage EDLC electrolytes are presented.
Key words:  supercapacitor    electrolyte    high voltage    design of electrolyte    functional additive
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  O646.1  
基金资助: 山西省重点研发计划(2021020660301013);山西省关键核心技术和共性技术研发攻关专项(20201102018)
通讯作者:  *陈成猛,博士,中国科学院山西煤炭化学研究所研究员、博士研究生导师。主要从事先进炭材料与储能器件的研究工作。ccm@sxicc.ac.cn   
作者简介:  徐桂培,广东电网有限责任公司云浮郁南供电局生产计划部副经理、高级工程师。目前主要从事配电生产技术、智能创新工作。
引用本文:    
徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 易宗琳, 邸会芳, 王振兵, 苏方远, 陈成猛. 高电压双电层超级电容器电解质的研究进展[J]. 材料导报, 2025, 39(9): 24030012-8.
XU Guipei, LIU Hao, LAI Jiewen, LU Yifeng, HUANG Hui, YI Zonglin, DI Huifang, WANG Zhenbing, SU Fangyuan, CHEN Chengmeng. Research Progress of Electrolytes for High-voltage Electrochemical Double-layer Capacitors. Materials Reports, 2025, 39(9): 24030012-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030012  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24030012
1 Noori A, El-Kady M F, Rahmanifar M S, et al. Chemical Society Reviews, 2019, 48(5), 1272.
2 Simon P, Gogotsi Y. Nature Materials, 2020, 19(11), 1151.
3 Huang J, Yuan K, Chen Y. Advanced Functional Materials, 2022, 32, 2108107.
4 Xing F, Bi Z, Su F, et al. Advanced Energy Materials, 2022, 12, 2200594.
5 Dou Q, Park H S. Energy & Environmental Materials, 2020, 3(3), 286.
6 Yu X, Ruan D, Wu C, et al. Journal of Power Sources, 2014, 265, 309.
7 van Aken K L, Beidaghi M, Gogotsi Y. Angewandte Chemie International Edition, 2015, 54(16), 4806.
8 Wang X, Chandrabose R S, Jian Z, et al. Journal of the Electrochemical Society, 2016, 163(9), A1853.
9 Zhou D, Wang H, Mao N, et al. Microporous and Mesoporous Materials, 2017, 241, 202.
10 Xiao D, Wu Q, Liu X, et al. ChemElectroChem, 2018, 6(2), 439.
11 Wang Y Z, Shan X Y, Ma L P, et al. Advanced Energy Materials, 2019, 9, 1803715.
12 Nguyen H V T, Faheem A B, Kwak K, et al. Journal of Power Sources, 2020, 463, 228134.
13 Meng J, Ye M, Wang Y, et al. Science China Chemistry, 2021, 65(1), 96.
14 Köps L, Kreth F A, Leistenschneider D, et al. Advanced Energy Materials, 2023, 13, 2203821.
15 Yu J, Yu C, Song X, et al. Journal of the American Chemical Society, 2023, 145, 13828.
16 Guo T, Zhou D, Pang L, et al. Small, 2022, 18(16), e2106360.
17 Suo L, Borodin O, Gao T, et al. Science, 2015, 350(6263), 938.
18 Dou Q, Lu Y, Su L, et al. Energy Storage Materials, 2019, 23, 603.
19 Zhong C, Deng Y, Hu W, et al. Chemical Society Reviews, 2015, 44(21), 7484.
20 Chiba K, Ueda T, Yamaguchi Y, et al. Journal of the Electrochemical Society, 2011, 158(8), A1320.
21 Iwama E, Ueda T, Ishihara Y, et al. Electrochimica Acta, 2019, 301, 312.
22 Xu K, Ding M S, Jow T R. Journal of the Electrochemical Society, 2001, 148(3), A267.
23 Krummacher J, Hess L H, Balducci A. Chemsuschem, 2017, 10(21), 4178.
24 Liu Y, Réty B, Matei Ghimbeu C, et al. Journal of Power Sources, 2019, 434(15), 226734.
25 Nguyen H V T, Lee S, Kwak K, et al. Electrochimica Acta, 2019, 321(20), 134649.
26 Lim J M, Jang Y S, Van T N H, et al. Nanoscale Advances, 2023, 5(3), 615.
27 Krause F C, Jones J P, Smart M C, et al. Electrochimica Acta, 2021, 374(1), 137898.
28 You S K, Park S G. Journal of the Korean Electrochemical Society, 2017, 20(1), 13. s
29 Wang Y Z, Shan X Y, Wang D W, et al. Journal of Energy Chemistry, 2019, 38, 214.
30 Stettner T, Balducci A. Energy Storage Materials, 2021, 40, 402.
31 Pan S, Yao M, Zhang J, et al. Frontiers in Chemistry, 2020, 8, 261.
32 Shi M, Kou S, Yan X. Chemsuschem, 2014, 7(11), 3053.
33 Lazzari M, Soavi F, Mastragostino M. Journal of Power Sources, 2008, 178(1), 490.
34 Arbizzani C, Biso M, Cericola D, et al. Journal of Power Sources, 2008, 185(2), 1575.
35 Pohlmann S, Olyschläger T, Goodrich P, et al. Journal of Power Sources, 2015, 273, 931.
36 Lian C, Liu H, Wu J. The Journal of Physical Chemistry C, 2018, 122(32), 18304.
37 Schroeder M, Isken P, Winter M, et al. Journal of the Electrochemical Society, 2013, 160(10), A1753.
38 Yang L, Hu J, Lei G, et al. Chemical Engineering Journal, 2014, 258, 320.
39 Ayalneh Tiruye G, Muñoz-Torrero D, Palma J, et al. Journal of Power Sources, 2015, 279, 472.
40 Jiménez-Cordero D, Heras F, Gilarranz M A, et al. Carbon, 2014, 71, 127.
41 Wang H, Sun X, Liu Z, et al. Nanoscale, 2014, 6(12), 6577.
42 Li S, Qi L, Lu L, et al. RSC Advances, 2012, 2(8), 3298.
43 Sevilla M, Fuertes A B. ACS Nano, 2014, 8(5), 5069.
44 Jung N, Kwon S, Lee D, et al. Advanced Materials, 2013, 25(47), 6854.
45 Momodu D, Sylla N F, Mutuma B, et al. Journal of Electroanalytical Chemistry, 2019, 838, 119.
46 Du H, Song K, Yang M, et al. Chemsuschem, 2023, 16, e202300708.
47 Chiba K, Ueda T, Yamaguchi Y, et al. Journal of the Electrochemical Society, 2011, 158(12), A872.
48 Hong K, Cho M, Kim S O. ACS Applied Materials & Interfaces, 2015, 7(3), 1899.
49 Bai Y, Li N, Yang C, et al. Journal of Power Sources, 2021, 510(31), 230406.
50 Yi Z, Su F, Wang Z F, et al. Energy Storage Materials, 2022, 53, 946.
51 Le Fevre L W, Fields R, Redondo E, et al. Journal of Power Sources, 2019, 424, 52.
52 Ruschhaupt P, Pohlmann S, Varzi A, et al. Batteries & Supercaps, 2020, 3(8), 698.
53 Schütter C, Husch T, Korth M, et al. The Journal of Physical Chemistry C, 2015, 119(24), 13413.
54 Schütter C, Husch T, Viswanathan V, et al. Journal of Power Sources, 2016, 326, 541.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[3] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[4] 周柯, 王晓明, 金庆忍, 常彬彬. 一步法构筑石墨化多级孔碳材料及其超级电容储能性能研究[J]. 材料导报, 2025, 39(18): 24080215-7.
[5] 白京陇, 元丽华, 戴怡乐, 赵继威, 贺艳霞, 魏智强. 金属有机框架衍生的碳包覆二硫化钴多面体材料的电化学性能研究[J]. 材料导报, 2025, 39(16): 24090099-8.
[6] 张笑儒, 宋静, 罗来马, 孙宏骞, 赵聪聪, 田硕, 田亮亮, 吴玉程. 固态锂离子电池电解质材料应用性能的研究进展[J]. 材料导报, 2025, 39(13): 24060166-20.
[7] 刘庆, 欧阳雪琼, 刘文财, 吕洋, 王双喜. 流延工艺制备氧化锆燃料电池薄膜的研究进展[J]. 材料导报, 2025, 39(10): 24020149-10.
[8] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[9] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[10] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[11] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[12] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[13] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[14] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[15] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[1] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[2] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[3] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[4] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[5] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[6] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[7] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[8] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[9] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed