Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24100197-7    https://doi.org/10.11896/cldb.24100197
  无机非金属及其复合材料 |
碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用
高兆辉*, 唐茂勇, 迟建卫, 章天歌
大连海洋大学海洋科技与环境学院,辽宁 大连 116023
Synthesis of Carbon-encapsulated Vanadium Nitride/Carbon (VN/C) Nanocomposites and Their Application as Supercapacitor Electrodes
GAO Zhaohui*, TANG Maoyong, CHI Jianwei, ZHANG Tiange
School of Marine Science and Environment Engineering, Dalian Ocean University, Dalian 116023, Liaoning, China
下载:  全 文 ( PDF ) ( 12637KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以十六烷基三甲基溴化铵(CTAB)同时作为模板剂和碳源,通过碳化-氨解还原法成功制备了碳包覆氮化钒/碳(VN/C)复合纳米材料。研究结果表明,当NH4VO3与CTAB物质的量比为4∶1时,制备的VN/C4∶1复合材料具有最优结构:VN颗粒表面形成厚度1~10 nm的均匀碳包覆层,比表面积达244 m2/g,并富含2~6 nm的介孔。该复合材料兼具双电层电容特性和赝电容特性,在100 mA/g电流密度下展现出406.7 F/g的高比电容;即使电流密度大幅提升至5 A/g,比电容仍能保持281.4 F/g,表现出优异的倍率性能。进一步地,以VN/C4∶1为负极、NIOx为正极组装成VN/C4∶1∥NIOx非对称超级电容器。该器件最高比电容达118 F/g,在39.7 Wh/kg能量密度下,功率密度约为502 W/kg;当功率密度提升至3 120 W/kg时,能量密度仍维持在21.5 Wh/kg。尤为突出的是,该非对称超级电容器展现出卓越的循环稳定性,经10 000次充放电循环后,比电容保持率仍高达88.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高兆辉
唐茂勇
迟建卫
章天歌
关键词:  碳包覆  氮化钒/碳(VN/C)  复合纳米材料  超级电容器  电极材料    
Abstract: Carbon-encapsulated vanadium nitride/carbon (VN/C) nanocomposites were synthesized via a carbonization-ammonolysis reduction method utilizing cetyltrimethylammonium bromide (CTAB) as both a template agent and carbon source. Experimental results indicate that a molar ratio of NH4VO3 to CTAB of 4∶1 yields the VN/C4∶1 composite with optimal structural properties. Within this composite, VN particles are uniformly encapsulated with a carbon layer approximately 1—10 nm thick. The material possesses a specific surface area of 244 m2/g and abundant mesopores ranging from 2—6 nm. This VN/C4∶1 composite exhibits combined electric double-layer capacitance (EDLC) and pseudocapacitive behavior, delivering a high specific capacitance of 406.7 F/g at a current density of 100 mA/g. Remarkably, it maintains a specific capacitance of 281.4 F/g even at a significantly elevated current density of 5 A/g, demonstrating excellent rate capability. To demonstrate its practical application, an asymmetric supercapacitor (ASC) was assembled using VN/C4∶1 as the anode and NiOx as the cathode (denoted VN/C4∶1∥NiOx). The device achieves a maximum specific capacitance of 118 F/g, delivering an energy density of 39.7 Wh/kg at a power density of 502 W/kg. Furthermore, at a high power density of 3 120 W/kg, the ASC retained an energy density of 21.5 Wh/kg. Notably, the asymmetric supercapacitor exhibits outstanding cycling stability, retaining 88.9% of its initial specific capacitance after 10 000 charge-discharge cycles.
Key words:  carbon-encapsulated    vanadium nitride/carbon (VN/C)    nanocomposite    supercapacitor    electrode material
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  O646.54  
  TM53  
基金资助: 中央财政支持地方高校发展专项基金(500217201010);辽宁省教育厅基金(LJKZ0710);辽宁省自然科学基金指导计划项目(20180550123)
通讯作者:  *高兆辉,博士,大连海洋大学海洋科技与环境学院实验师。目前主要从事纳米材料在能源和环境领域的应用等方面的研究。gzhaohui892@163.com   
引用本文:    
高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
GAO Zhaohui, TANG Maoyong, CHI Jianwei, ZHANG Tiange. Synthesis of Carbon-encapsulated Vanadium Nitride/Carbon (VN/C) Nanocomposites and Their Application as Supercapacitor Electrodes. Materials Reports, 2025, 39(19): 24100197-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100197  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24100197
1 Wang F, Wu X, Yuan X, et al. Chemical Society Reviews, 2017, 46, 6816.
2 Jin H, Li J, Yuan Y, et al. Advanced Energy Materials, 2018, 8, 1801007.
3 Zheng X, Miao L, Song Z, et al. Journal of Materials Chemistry A , 2022, 10, 611.
4 Shao Y, El-Kady M F, Sun J, et al. Chemical Reviews, 2018, 118, 9233.
5 Zhang W, Liu B, Yang M, et al. Journal of Materials Science & Technology, 2021, 95, 105.
6 Song Z, Miao L, Ruhlmann L, et al. Advanced Functional Materials , 2022, 32, 2208049.
7 Zhang Y, Jing X, Yan X H, et al. Coordination Chemistry Reviews, 2024, 499, 215494.
8 Zhang Y, Zhang Y Y, Li C E, et al. Coordination Chemistry Reviews, 2024, 519, 216103.
9 Zhang Y, Mei H X, Cao Y, et al. Coordination Chemistry Reviews, 2021, 438, 213910.
10 Zhang Y, Xue S C, Yan X H, et al. Electrochimica Acta, 2023, 442, 141822.
11 Jiang Y, Liu J. Energy & Environmental Materials, 2019, 2, 30.
12 Luo Y, Lin H, Chu Y, et al. Chemical Communications, 2023, 59, 7208.
13 Cheng N, Liu Z, Li W, et al. Chemical Engineering Journal, 2023, 454, 140146.
14 Ding J, Yang Y, Poisson J, et al. ACS Energy Letters, 2024, 9, 1803.
15 Luo S, Liu Y, Song Y, et al. Chemical Communications, 2024, 60, 3295.
16 Zhang X, Kong R M, Du H, et al. Chemical Communications, 2018, 54, 5323.
17 Zhao D, Yuan X, Wang R, et al. Journal of Materials Science:Materials in Electronics, 2021, 32, 21197.
18 Xu Y, Wang J, Shen L, et al. Electrochimica Acta, 2015, 173, 680.
19 Li S, Sun X, Yao Z, et al. Advanced Functional Materials, 2019, 29, 1904780.
20 Zhou Z, Liang Z, Shao G, et al. Journal of the Electrochemical Society, 2021, 168, 070529.
21 Asbani B, Robert K, Roussel P, et al. Energy Storage Materials, 2021, 37, 207.
22 Wu Z Q, Yang B B, Li H, et al. Journal of Power Sources, 2021, 507, 230269.
23 Jrondi A, Buvat G, De La Pena F, et al. Advanced Energy Materials, 2023, 13, 2203462.
24 Chen M, Fan H, Zhang Y, et al. Small, 2020, 16, 2003434.
25 Sharma G K, Hor A A, Hashmi S A, et al. ACS Applied Materials & Interfaces, 2023, 15, 52593.
26 Yang Y, Shen K, Liu Y, et al. Nano-Micro Letters, 2017, 9, 6.
27 Wu H, Qin M, Cao Z, et al. Applied Surface Science, 2019, 466, 982.
28 Ma M, Shi Z, Li Y, et al. Journal of Materials Chemistry A, 2020, 8, 4827.
29 Zhang W, Ji X, Ma N, et al. Applied Surface Science, 2020, 525, 146619.
30 Venkateshalu S, Grace A N. Electrochimica Acta, 2020, 341, 136035.
31 Pallavolu M R, Kumar Y A, Nallapureddy R R, et al. Applied Surface Science, 2022, 575, 151734.
32 Zhou H, Alam M, Wu Y, et al. ACS Applied Materials & Interfaces, 2023, 15, 18819.
33 Sun Q, Lv Y, Wu X, et al. Journal of Alloys and Compounds, 2020, 818, 152895.
34 Wu Y, Yang Y, Zhao X, et al. Nano-Micro Letters, 2018, 10, 63.
35 Zhang D, Wang D, Feng B, et al. Chemical Communications, 2024, 60, 7590.
36 Wu Z, Li H, Li H, et al. Chemical Engineering Journal, 2022, 444, 136597.
37 Wunch M A, Garcia J A, Mahmood S F, et al. Electrochimica Acta, 2024, 488, 143992.
38 Wu Y, Ran F. Journal of Power Sources, 2017, 344, 1.
39 Jia H, Cai Y, Li S, et al. Journal of Colloid and Interface Science, 2020, 560, 122.
40 Jiang X, Lu W, Yu X, et al. Nanoscale Advances, 2020, 2, 3865.
41 Zeng F, Lu T, He W, et al. Carbon, 2021, 175, 289.
42 Liu H H, Zhang H L, Xu H B, et al. Nanoscale, 2018, 10, 5246.
43 Tan Y, Liu Y, Tang Z, et al. Scientific Reports, 2018, 8, 2915.
44 Wu Z, Chen Q, Li C, et al. Journal of Materials Science & Technology, 2023, 155, 167.
45 Lim T S, Ock I W, Lee J, et al. Journal of Alloys and Compounds, 2023, 934, 167858.
46 Kitchamsetti N, Narsimulu D, Payyavula S, et al. Journal of Energy Storage, 2025, 109, 115144.
47 Issar S, Kodan S, Bansal A, et al. Electrochimica Acta, 2025, 535, 146636.
48 Liu X, Du T, Zhang J, et al. Journal of Solid State Electrochemistry, DOI:10.1007/s10008-025-06352-8.
49 Li X L, Song H, Zhang Y H, et al. Rare Metals, 2025, 44, 3909.
50 Zhang Y, Zhou C G, Yan X H, et al. Journal of Power Sources, 2023, 565, 232916.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 易宗琳, 邸会芳, 王振兵, 苏方远, 陈成猛. 高电压双电层超级电容器电解质的研究进展[J]. 材料导报, 2025, 39(9): 24030012-8.
[3] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[4] 彭朝银, 姚耀春, 李银, 陈秋霖, 张克宇, 胡均贤, 张少泽. 杂原子掺杂磷酸铁锂碳包覆层的改性研究进展[J]. 材料导报, 2025, 39(19): 24080184-8.
[5] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[6] 周柯, 王晓明, 金庆忍, 常彬彬. 一步法构筑石墨化多级孔碳材料及其超级电容储能性能研究[J]. 材料导报, 2025, 39(18): 24080215-7.
[7] 白京陇, 元丽华, 戴怡乐, 赵继威, 贺艳霞, 魏智强. 金属有机框架衍生的碳包覆二硫化钴多面体材料的电化学性能研究[J]. 材料导报, 2025, 39(16): 24090099-8.
[8] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[9] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[10] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[11] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[12] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[13] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[14] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[15] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed