Abstract: Carbon-encapsulated vanadium nitride/carbon (VN/C) nanocomposites were synthesized via a carbonization-ammonolysis reduction method utilizing cetyltrimethylammonium bromide (CTAB) as both a template agent and carbon source. Experimental results indicate that a molar ratio of NH4VO3 to CTAB of 4∶1 yields the VN/C4∶1 composite with optimal structural properties. Within this composite, VN particles are uniformly encapsulated with a carbon layer approximately 1—10 nm thick. The material possesses a specific surface area of 244 m2/g and abundant mesopores ranging from 2—6 nm. This VN/C4∶1 composite exhibits combined electric double-layer capacitance (EDLC) and pseudocapacitive behavior, delivering a high specific capacitance of 406.7 F/g at a current density of 100 mA/g. Remarkably, it maintains a specific capacitance of 281.4 F/g even at a significantly elevated current density of 5 A/g, demonstrating excellent rate capability. To demonstrate its practical application, an asymmetric supercapacitor (ASC) was assembled using VN/C4∶1 as the anode and NiOx as the cathode (denoted VN/C4∶1∥NiOx). The device achieves a maximum specific capacitance of 118 F/g, delivering an energy density of 39.7 Wh/kg at a power density of 502 W/kg. Furthermore, at a high power density of 3 120 W/kg, the ASC retained an energy density of 21.5 Wh/kg. Notably, the asymmetric supercapacitor exhibits outstanding cycling stability, retaining 88.9% of its initial specific capacitance after 10 000 charge-discharge cycles.
1 Wang F, Wu X, Yuan X, et al. Chemical Society Reviews, 2017, 46, 6816. 2 Jin H, Li J, Yuan Y, et al. Advanced Energy Materials, 2018, 8, 1801007. 3 Zheng X, Miao L, Song Z, et al. Journal of Materials Chemistry A , 2022, 10, 611. 4 Shao Y, El-Kady M F, Sun J, et al. Chemical Reviews, 2018, 118, 9233. 5 Zhang W, Liu B, Yang M, et al. Journal of Materials Science & Technology, 2021, 95, 105. 6 Song Z, Miao L, Ruhlmann L, et al. Advanced Functional Materials , 2022, 32, 2208049. 7 Zhang Y, Jing X, Yan X H, et al. Coordination Chemistry Reviews, 2024, 499, 215494. 8 Zhang Y, Zhang Y Y, Li C E, et al. Coordination Chemistry Reviews, 2024, 519, 216103. 9 Zhang Y, Mei H X, Cao Y, et al. Coordination Chemistry Reviews, 2021, 438, 213910. 10 Zhang Y, Xue S C, Yan X H, et al. Electrochimica Acta, 2023, 442, 141822. 11 Jiang Y, Liu J. Energy & Environmental Materials, 2019, 2, 30. 12 Luo Y, Lin H, Chu Y, et al. Chemical Communications, 2023, 59, 7208. 13 Cheng N, Liu Z, Li W, et al. Chemical Engineering Journal, 2023, 454, 140146. 14 Ding J, Yang Y, Poisson J, et al. ACS Energy Letters, 2024, 9, 1803. 15 Luo S, Liu Y, Song Y, et al. Chemical Communications, 2024, 60, 3295. 16 Zhang X, Kong R M, Du H, et al. Chemical Communications, 2018, 54, 5323. 17 Zhao D, Yuan X, Wang R, et al. Journal of Materials Science:Materials in Electronics, 2021, 32, 21197. 18 Xu Y, Wang J, Shen L, et al. Electrochimica Acta, 2015, 173, 680. 19 Li S, Sun X, Yao Z, et al. Advanced Functional Materials, 2019, 29, 1904780. 20 Zhou Z, Liang Z, Shao G, et al. Journal of the Electrochemical Society, 2021, 168, 070529. 21 Asbani B, Robert K, Roussel P, et al. Energy Storage Materials, 2021, 37, 207. 22 Wu Z Q, Yang B B, Li H, et al. Journal of Power Sources, 2021, 507, 230269. 23 Jrondi A, Buvat G, De La Pena F, et al. Advanced Energy Materials, 2023, 13, 2203462. 24 Chen M, Fan H, Zhang Y, et al. Small, 2020, 16, 2003434. 25 Sharma G K, Hor A A, Hashmi S A, et al. ACS Applied Materials & Interfaces, 2023, 15, 52593. 26 Yang Y, Shen K, Liu Y, et al. Nano-Micro Letters, 2017, 9, 6. 27 Wu H, Qin M, Cao Z, et al. Applied Surface Science, 2019, 466, 982. 28 Ma M, Shi Z, Li Y, et al. Journal of Materials Chemistry A, 2020, 8, 4827. 29 Zhang W, Ji X, Ma N, et al. Applied Surface Science, 2020, 525, 146619. 30 Venkateshalu S, Grace A N. Electrochimica Acta, 2020, 341, 136035. 31 Pallavolu M R, Kumar Y A, Nallapureddy R R, et al. Applied Surface Science, 2022, 575, 151734. 32 Zhou H, Alam M, Wu Y, et al. ACS Applied Materials & Interfaces, 2023, 15, 18819. 33 Sun Q, Lv Y, Wu X, et al. Journal of Alloys and Compounds, 2020, 818, 152895. 34 Wu Y, Yang Y, Zhao X, et al. Nano-Micro Letters, 2018, 10, 63. 35 Zhang D, Wang D, Feng B, et al. Chemical Communications, 2024, 60, 7590. 36 Wu Z, Li H, Li H, et al. Chemical Engineering Journal, 2022, 444, 136597. 37 Wunch M A, Garcia J A, Mahmood S F, et al. Electrochimica Acta, 2024, 488, 143992. 38 Wu Y, Ran F. Journal of Power Sources, 2017, 344, 1. 39 Jia H, Cai Y, Li S, et al. Journal of Colloid and Interface Science, 2020, 560, 122. 40 Jiang X, Lu W, Yu X, et al. Nanoscale Advances, 2020, 2, 3865. 41 Zeng F, Lu T, He W, et al. Carbon, 2021, 175, 289. 42 Liu H H, Zhang H L, Xu H B, et al. Nanoscale, 2018, 10, 5246. 43 Tan Y, Liu Y, Tang Z, et al. Scientific Reports, 2018, 8, 2915. 44 Wu Z, Chen Q, Li C, et al. Journal of Materials Science & Technology, 2023, 155, 167. 45 Lim T S, Ock I W, Lee J, et al. Journal of Alloys and Compounds, 2023, 934, 167858. 46 Kitchamsetti N, Narsimulu D, Payyavula S, et al. Journal of Energy Storage, 2025, 109, 115144. 47 Issar S, Kodan S, Bansal A, et al. Electrochimica Acta, 2025, 535, 146636. 48 Liu X, Du T, Zhang J, et al. Journal of Solid State Electrochemistry, DOI:10.1007/s10008-025-06352-8. 49 Li X L, Song H, Zhang Y H, et al. Rare Metals, 2025, 44, 3909. 50 Zhang Y, Zhou C G, Yan X H, et al. Journal of Power Sources, 2023, 565, 232916.