Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24070213-11    https://doi.org/10.11896/cldb.24070213
  无机非金属及其复合材料 |
钠离子电池关键材料的热行为研究新进展
孙文浩*, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰
中国北方车辆研究所,北京 100072
New Development of the Thermal Behavior of Key Materials in Sodium-ion Batteries
SUN Wenhao*, TIAN Jun, GAO Hongbo, LIU Na, ZHANG Kun, LIANG Xiaoqiang, WANG Congjie, WANG Haochen
China North Vehicle Research Institute, Beijing 100072, China
下载:  全 文 ( PDF ) ( 33336KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钠离子电池凭借其低成本、宽工作温度范围和高安全性等优势,在新能源产业中展现出广阔的应用前景。然而,电极材料与有机电解液在高温下的非本征安全对钠离子电池的工作稳定性造成了较大的威胁。深入研究钠离子电池关键材料的热行为,对于揭示钠离子电池的热失控机制以及指导其安全性设计具有至关重要的意义。因此,本文首先阐述了钠离子电池的热失控过程,然后系统性地归纳和讨论了钠离子电池关键材料(正极、负极和电解液)的热稳定性以及产热/产气特性,最后提出了改善钠离子电池安全性的策略,并对其未来的发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙文浩
田君
高洪波
刘娜
张锟
梁晓嫱
王聪杰
王浩辰
关键词:  钠离子电池  热失控  热稳定性  电极材料  电解液    
Abstract: Sodium-ion batteries have demonstrated broad application prospects in the new energy industry due to their advantages of low cost, wide operating temperature range, and high safety. However, the non-intrinsic safety of electrode materials and organic electrolytes at high temperatures poses a significant threat to the operational stability of sodium-ion batteries. A thorough investigation into the thermal behavior of key materials in sodium-ion batteries is crucial for elucidating their thermal runaway mechanisms and guiding safety-oriented design. Therefore, this review first describes the thermal runaway process of sodium-ion batteries, then systematically summarizes and discusses the thermal stability as well as heat/gas generation characteristics of key materials (cathode, anode, and electrolyte) in sodium-ion batteries, and finally proposes stra-tegies aimed at improving the safety of sodium-ion batteries and provides an outlook on their future development directions.
Key words:  sodium-ion battery    thermal runaway    thermal stability    electrode material    electrolyte
发布日期:  2025-05-29
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52075028)
通讯作者:  *孙文浩,博士,工程师。目前主要从事动力及储能电池测试评价技术的研究。563729367@qq.com   
引用本文:    
孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
SUN Wenhao, TIAN Jun, GAO Hongbo, LIU Na, ZHANG Kun, LIANG Xiaoqiang, WANG Congjie, WANG Haochen. New Development of the Thermal Behavior of Key Materials in Sodium-ion Batteries. Materials Reports, 2025, 39(11): 24070213-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070213  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24070213
1 Yang Y, Wang R, Shen Z, et al. Advances in Applied Energy, 2023, 11, 100146.
2 Degen F, Winter M, Bendig D, et al. Nature Energy, 2023, 8(11), 1284.
3 Velumani D, Bansal A. Energy & Fuels, 2022, 36(23), 14000.
4 Mei W, Liu Z, Wang C, et al. Nature Communications, 2023, 14(1), 5251.
5 Gao Z, Rao S, Zhang T, et al. Advanced Science, 2022, 9(5), 2103796.
6 Sun W, Xu H, Zhou B, et al. Journal of Energy Storage, 2024, 91, 111527.
7 Yu T, Li G, Duan Y, et al. Journal of Alloys and Compounds, 2023, 958, 170486.
8 Chen Yongxin, Shan Xiaolong, Wu Jiangtao, et al. Materials Research and Application,2024,18(6), 901(in Chinese).
陈永鑫, 单晓龙, 吴江涛, 等. 材料研究与应用, 2024, 18(6), 901.
9 Zhang H, Gao Y, Liu X, et al. Advanced Energy Materials, 2023, 13(23), 2300149.
10 Singh A N, Islam M, Meena A, et al. Advanced Functional Materials, 2023, 33(46), 2304617.
11 Li Z, Zhang Y, Zhang J, et al. Angewandte Chemie International Edition, 2022, 61(13), e202116930.
12 Zhou Q, Li Y, Tang F, et al. Chinese Physics Letters, 2021, 38(7), 076501.
13 Rudola A, Wright C J, Barker J. Energy Material Advances, 2021, 2021, 1.
14 Sirengo K, Babu A, Brennan B, et al. Journal of Energy Chemistry, 2023, 81, 321.
15 Li C, Xu H, Ni L, et al. Advanced Energy Materials, 2023, 13(40), 2301758.
16 Wang Y, Ou R, Yang J, et al. Journal of Energy Chemistry, 2024, 95, 407.
17 Yang C, Xin S, Mai L, et al. Advanced Energy Materials, 2021, 11(2), 2000974.
18 Qiao S, Zhou Q, Ma M, et al. ACS Nano, 2023, 17(12), 11220.
19 Liang X, Hwang J Y, Sun Y K. Advanced Energy Materials, 2023, 13(37), 2301975.
20 Prajapati A K, Bhatnagar A. Journal of Energy Chemistry, 2023, 83, 509.
21 Huang Z, Zhang X, Zhao X, et al. Inorganic Chemistry Frontiers, 2023, 10(1), 37.
22 Guo X, Guo S, Wu C, et al. Advanced Energy Materials, 2023, 13(10), 2203903.
23 Chen J, Adit G, Li L, et al. Energy & Environmental Materials, 2023, 6(4), e12633.
24 Zhang Y, Xu T, Wang Z, et al. Electronic Components and Materials, 2020, 39(11), 21 (in Chinese).
张玉婷, 徐天野, 王振华, 等. 电子元件与材料, 2020, 39(11), 21.
25 Xie H, Zheng D, Luo X, et al. Zhengjiang Chemical Industry, 2023, 54(12), 8 (in Chinese).
谢浩杰, 郑冬芳, 罗霞, 等. 浙江化工, 2023, 54(12), 8.
26 Huang D, Chen M. Information Recording Materials, 2023, 24(6), 14 (in Chinese).
黄登甲, 陈钼. 信息记录材料, 2023, 24(6), 14.
27 Li Y, Lu Y, Chen L, et al. Chinese Physics B, 2020, 29(4), 048201.
28 Chayambuka K, Mulder G, Danilov D L, et al. Advanced Energy Materials, 2018, 8(16), 1800079.
29 Peng C, Xu X, Li F, et al. Small Structures, 2023, 4(10), 2300150.
30 Shi W, Sun Z, Song Z, et al. Chinese Journal of Applied Chemistry, 2023, 40(4), 583 (in Chinese).
师文君, 孙中辉, 宋忠乾, 等. 应用化学, 2023, 40(4), 583.
31 Liu Z, Peng C, Wu J, et al. Materials Today, 2023, 68, 22.
32 Liu Z, Wu J, Zeng J, et al. Advanced Energy Materials, 2023, 13(29), 2301471.
33 Liu Z, Shen J, Feng S, et al. Angewandte Chemie International Edition, 2021, 133(38), 21128.
34 Mohsin I U, Ziebert C, Rohde M, et al. Batteries, 2021, 7(1), 16.
35 Mohsin I U, Ziebert C, Rohde M, et al. Journal of the Electrochemical Society, 2021, 168(5), 050544.
36 Palanisamy M, Reddy B V R, Shirage P M, et al. ACS Applied Materials & Interfaces, 2021, 13(27), 31594.
37 Xie Y, Xu G L, Che H, et al. Chemistry of Materials, 2018, 30(15), 4909.
38 Liang X, Sun Y K. Advanced Functional Materials, 2022, 32(44), 2206154.
39 Ma Y, Yang J, Cao Z, et al. Chinese Journal of High Pressure Physics, 2024, 38(6), 200 (in Chinese).
马宇哲, 杨军, 曹泽阳, 等. 高压物理学报, 2024, 38(6), 200.
40 Zhao J, Xu J, Lee D H, et al. Journal of Power Sources, 2014, 264, 235.
41 Yue Y, Jia Z, Li Y, et al. Process Safety and Environmental Protection, 2024, 189, 61.
42 Kim D H, Kim J Y, Park J H, et al. Ceramics International, 2022, 48(14), 19675.
43 Zou K, He K, Lu S. International Journal of Heat and Mass Transfer, 2022, 195, 123133.
44 Jia Z, Qin P, Li Z, et al. Journal of Energy Storage, 2022, 50, 104302.
45 Liu P, Liu C, Yang K, et al. Journal of Energy Storage, 2020, 31, 101714.
46 Robinson J B, Heenan T M M, Jervis J R, et al. Journal of Power Sources, 2018, 400, 360.
47 Robinson J B, Finegan D P, Heenan T M M, et al. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(1), 011010.
48 Xia X, Dahn J R. Electrochemical and Solid-State Letters, 2011, 15(1), A1.
49 Zhao J, Zhao L, Dimov N, et al. Journal of the Electrochemical Society, 2013, 160(5), A3077.
50 Hou D, Gabriel E, Graff K, et al. Journal of Materials Research, 2022, 37(6), 1156.
51 Lu X, Li S, Li Y, et al. Advanced Materials, 2024, 36(36), 2407359.
52 Gui Q, Xu B, Yu K, et al. Chemical Engineering Journal, 2024, 497, 154732.
53 Heubner C, Schneider M, Michaelis A. Journal of Solid State Electrochemistry, 2018, 22, 1099.
54 Samigullin R R, Drozhzhin O A, Antipov E V. ACS Applied Energy Materials, 2021, 5(1), 14.
55 Lim S Y, Kim H, Shakoor R A, et al. Journal of the Electrochemical Society, 2012, 159(9), A1393.
56 Cui G, Wang H, Yu F, et al. Chinese Journal of Chemical Engineering, 2022, 46, 280.
57 Samigullin R R, Zakharkin M V, Drozhzhin O A, et al. Energies, 2023, 16(7), 3051.
58 Subasinghe L U, Wang C, Gajjela S R, et al. Journal of Thermal Analysis and Calorimetry, 2022, 147(16), 8631.
59 Bordes A, Marlair G, Zantman A, et al. ACS Energy Letters, 2022, 7(10), 3386.
60 Fernandes Y, Bry A, De Persis S. Journal of Power Sources, 2018, 389, 106.
61 Bordes A, Marlair G, Zantman A, et al. Journal of Energy Storage, 2022, 52, 104790.
62 Li H, He Y, Zhou G. Materials Reports, 2021, 35(23), 23050 (in Chinese).
李欢, 何妍妍, 周国伟. 材料导报, 2021, 35(23), 23050.
63 Peng J, Zhang W, Liu Q, et al. Advanced Materials, 2022, 34(15), 2108384.
64 Subasinghe L U, Reddy G S, Rudola A, et al. Journal of the Electrochemical Society, 2020, 167(11), 110504.
65 Li Z, Dadsetan M, Gao J, et al. Advanced Energy Materials, 2021, 11(42), 2101764.
66 Mohsin I U, Hofmann A, Ziebert C. Electrochimica Acta, 2024, 487, 144197.
67 Chak C M, Jayakumar R, Shipitsyn V, et al. Journal of the Electrochemical Society, 2024, 171(7), 070512.
68 Dang R, Lu Y, Rong X, et al. Chinese Science Bulletin, 2022, 67, 3546.
69 Huang J, Wang C, Li J, et al. Materials Reports A:Review Papers, 2017, 31(11), 19 (in Chinese).
黄剑锋, 王彩薇, 李嘉胤, 等. 材料导报:综述篇, 2017, 31(11), 19.
70 Zhao H, Qin Y, Ren Y. Materials Reports, 2023, 37(3), 21030187 (in Chinese).
赵宏顺, 戚燕俐, 任玉荣. 材料导报, 2023, 37(3), 21030187.
71 Zhang Y, Zhang J, Duan J, et al. Materials Reports, 2020, 34(11), 8 (in Chinese).
张英杰, 张举峰, 段建国, 等. 材料导报, 2020, 34(11), 8.
72 Wang J, Xi L, Peng C, et al. Advanced Engineering Materials, 2024, 26(8), 2302063.
73 Yang X, Che H, Yang K, et al. The Chinese Journal of Process Engineering, 2022, 22(4), 553 (in Chinese).
杨馨蓉, 车海英, 杨轲, 等. 材料工程学报, 2022, 22(4), 553.
74 Mukai K, Inoue T. Electrochemistry Communications, 2018, 88, 101.
75 Rudola A, Saravanan K, Devaraj S, et al. Chemical Communications, 2013, 49(67), 7451.
76 Ponrouch A, Marchante E, Courty M, et al. Energy & Environmental Science, 2012, 5(9), 8572.
77 Du K, Wang C, Subasinghe L U, et al. Energy Storage Materials, 2020, 29, 287.
78 Eshetu G G, Grugeon S, Kim H, et al. ChemSusChem, 2016, 9(5), 462.
79 Shipitsyn V, Jayakumar R, Zuo W, et al. Journal of the Electrochemical Society, 2023, 170(11), 110501.
80 Gan Y, Ping P, Wang J, et al. Journal of Power Sources, 2024, 594, 234008.
81 Pan Y, Gong L, Fu Y, et al. Energy Storage Materials, 2022, 52, 238.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
[3] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[6] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[7] 唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
[8] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[9] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[10] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[11] 胡时光, 郭鹏凯, 钱韫娴, 张光照, 王军, 邓永红, 王朝阳. 氟代线性碳酸酯对高电压LiNi0.5Co0.2Mn0.3O2/人造石墨软包电池性能的影响[J]. 材料导报, 2023, 37(8): 22050331-7.
[12] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[13] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[14] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[15] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed