Abstract: As a new generation of energy storage system, potassium-based energy storage device has received much attention due to the abundant potassium resources and low cost. However, the large radius of potassium ions leads to slow reaction kinetics and pulverization of the electrode material during repeated insertion/extraction processes. Therefore, finding efficient electrode materials is the key to the development of potassium-based energy storage devices. Electrospun materials with one-dimensional long straight properties are ideal for building self-supporting or flexible electrodes. This paper summarizes the research progress of electrospun carbon fibers and their composites in terms of microstructure modulation and chemical modification and elucidates the application of functionalized electrospun electrode materials in potassium-based energy storage devices, such as potassium-ion batteries, potassium-metal batteries, potassium-ion hybrid capacitors, potassium-sulfur (selenium) batteries, and potassium-based dual-ion batteries. In addition, challenges and opportunities for the future development of the field are discussed.
1 Zhang H, Meng G, Liu Q, et al. Small, 2023, 19(48), 2303165. 2 Chen S, Xin Y, Zhou Y, et al. Energy Environmental Science, 2014, 7(6), 1924. 3 Dunn B, Kamath H, Tarascon J M. Science, 2011, 334(6058), 928. 4 He T, Feng J, Ru J, et al. ACS Nano, 2018, 13(1), 830. 5 Zuo W P, Zhou J E, Chen Y Y, et al. Materials Research and Application, 2024, 18(6), 866(in Chinese). 左卫朋, 周健恩, 陈跃颖, 等. 材料研究与应用, 2024, 18(6), 866. 6 Zhan J Q, Xing L D. Materials Research and Application, 2023, 17(5), 902(in Chinese). 占佳琦, 邢丽丹. 材料研究与应用, 2023, 17(5), 902. 7 Wang J, Yang N, Tang H, et al. Angewandte Chemie International Edition, 2013, 52(25), 6417. 8 Jagadale A, Zhou X, Xiong R, et al. Energy Storage Materials, 2019, 19, 314. 9 Christensen J, Albertus P, Sanchez-Carrera R S, et al. Journal of the Electrochemical Society, 2011, 159(2), R1. 10 Boaretto N, Garbayo I, Valiyaveettil-Sobhan R S, et al. Journal of Power Sources, 2021, 502, 229919. 11 Eftekhari A. Sustainable Energy & Fuels, 2017, 1(1), 14. 12 Wu Y, Wu P, Tang Y, et al. Advanced Functional Materials, 2024, 34(17), 2314344. 13 Wu Y, Wu X, Guan Y, et al. New Carbon Materials, 2022, 37(5), 852. 14 Zhang W, Liu Y, Guo Z. Science Advances, 2019, 5(5), eaav7412. 15 He H, Huang D, Tang Y, et al. Nano Energy, 2019, 57, 728. 16 Xu S, Li Z, Wei G, et al. Journal of Materials Chemistry A, 2022, 10(36), 18812. 17 Xia Y, Yang P, Sun Y, et al. Advanced Materials, 2003, 15(5), 353. 18 Jiang Z W, Liu C K, Wu H, et al. Materials Reports, 2023, 37(5), 21040283 (in Chinese). 江志威, 刘呈坤, 吴红, 等. 材料导报, 2023, 37(5), 21040283. 19 Xu C, Mu J, Zhou T, et al. Advanced Functional Materials, 2022, 32(38), 2206501. 20 Hosaka T, Kubota K, Hameed A S, et al. Chemical Reviews, 2020, 120 (14), 6358. 21 Xu Y, Du Y, Chen H, et al. Chemical Society Reviews, 2024, 53(13), 7202. 22 Liu C K, Lai K, Liu W, et al. Polymer International, 2009, 58(12), 1341. 23 He H, Huang D, Tang Y, et al. Nano Energy, 2019, 57, 728. 24 Lin X, Huang J, Zhang B. Carbon, 2019, 143, 138. 25 Liu F, Meng J, Xia F, et al. Journal of Materials Chemistry A, 2020, 8(35), 18079. 26 Chen L, Lin X, Gao J, et al. Electrochimica Acta, 2022, 403, 139654. 27 Hu X, Zhong G, Li J, et al. Energy & Environmental Science, 2020, 13(8), 2431. 28 Niu P, Wang P, Xu Y, et al. Inorganic Chemistry Frontiers, 2021, 8(16), 3926. 29 Geng S, Zhou T, Jia M, et al. Energy & Environmental Science, 2021, 14(5), 3184. 30 Touja J, Gabaudan V, Farina F, et al. Electrochimica Acta, 2020, 362, 137125 31 Liu P, Wang Y, Gu Q, et al. Advanced Materials, 2019, 32(7), 1906735. 32 Li S, Zhu H, Liu Y, et al. Nature Communications, 2022, 13(1), 4911. 33 Wang L, Wang H, Cheng M, et al. ACS Applied Energy Materials, 2021, 4(6), 6245. 34 Zhou R, Tan H, Gao Y, et al. Carbon, 2022, 186, 141. 35 Zhou Y, Tian S, Jia M Y, et al. Rare Metals, 2023, 42(8), 2622. 36 Tian S, Song Q, Zhang X, et al. Journal of Power Sources, 2023, 579, 233289. 37 Hu X, Zhong G, Li J, et al. Energy Environmental Science, 2020, 13(8), 2431. 38 Wang G Y, Wang X H, Sun J F, et al. Rare Metals, 2022, 41(11), 3706. 39 Huang X, Sun J, Wang L, et al. Small, 2021, 17(6), 2004369. 40 Lei Y J, Yang H L, Liang Y, et al. Advanced Energy Materials, 2022, 12(46), 2202523. 41 Jia M, Geng S, Jiang Q, et al. Journal of Materials Science, 2021, 56, 3911. 42 Zhao X, Hong Y, Cheng M, et al. Journal of Materials Chemistry A, 2020, 8(21), 10875. 43 Li D, Wang L, Cheng X, et al. Journal of Energy Chemistry, 2021, 62, 581. 44 Yao Y, Xu R, Chen M, et al. ACS Nano, 2019, 13(4), 4695. 45 Zhang L, Wang H, Zhang X, et al. Advanced Functional Materials, 2021, 31(20), 2010958. 46 Wang M, Tang Y. Advanced Energy Materials, 2018, 8(19), 1703320. 47 Zhang M, Shoaib M, Fei H, et al. Advanced Energy Materials, 2019, 9(37), 1901663. 48 Yu D, Luo W, Gu H, et al. Chemical Engineering Journal, 2023, 454, 139908.