Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24030236-8    https://doi.org/10.11896/cldb.24030236
  高分子与聚合物基复合材料 |
碳纤维长度对碳纤维纸基材料电磁屏蔽性能影响分析
龙学莉1, 陆赵情1,2,*, 王阮玉1, 贾峰峰1,*, 李思齐1, 黄涛1, 徐明源1
1 陕西科技大学轻工科学与工程学院(柔性电子学院),西安 710021
2 齐鲁工业大学(山东省科学院),济南 250353
The Effect Analysis of Carbon Fiber Length on Electromagnetic Interference Shielding Performance of Carbon Fiber Composite Paper
LONG Xueli1, LU Zhaoqing1,2,*, WANG Ruanyu1, JIA Fengfeng1,*, LI Siqi1, HUANG Tao1, XU Mingyuan1
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China
2 Qilu Univerisity of Technology (Shandong Academy of Science), Jinan 250353, China
下载:  全 文 ( PDF ) ( 62220KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以沥青基超细碳纤维为导电网络骨架和电磁波损耗剂,以芳纶沉析为辅助浆料,以芳纶短切纤维为增强纤维,通过造纸湿法成形工艺制备沥青基超细碳纤维纸基电磁屏蔽材料,探究沥青基超细碳纤维长度对碳纤维纸基材料微观形貌、力学性能、电磁屏蔽性能的影响。结果表明,碳纤维纸基材料定量70 g/m2,当原料碳纤维长度为5 mm(质量分数为45%,下同)时,碳纤维纸基电磁屏蔽材料的机械强度最佳,拉伸断裂应力达到19 MPa;当原料碳纤维长度为3 mm(含量为45%)时,所制备的碳纤维纸基材料电磁屏蔽性能最佳,电磁屏蔽效能达到22.25 dB。此外,在温度为240 ℃、压力为10 MPa的条件下热压处理5 min,碳纤维纸基材料在X波段的电磁屏蔽效能提高5.91 dB,相比未热压提升34.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙学莉
陆赵情
王阮玉
贾峰峰
李思齐
黄涛
徐明源
关键词:  电磁屏蔽  造纸湿法成形  碳纤维纸基材料  纤维长度    
Abstract: Carbon fiber paper-based electromagnetic shielding material was fabricated by paper-forming process using asphalt-based ultra-fine carbon fiber as conductive network skeleton, and electromagnetic wave loss agent, aramid fibrid as auxiliary forming slurry and aramid short fiber as reinforcing slurry. The effects of asphalt-based ultra-fine carbon fiber length on the microstructure, mechanical properties and electromagnetic shielding properties of carbon fiber paper-based materials were investigated. The results shown that the carbon fiber paper-based electromagnetic shielding material possessed the best mechanical properties when the length of the raw carbon fiber is 5 mm and the content is 45wt%, whose tensile strength reaches 38.9 kN/m and the breaking strength reaches 19 MPa. When the length of the raw carbon fiber was 3 mm and the content was 45wt%, the electromagnetic shielding performance of the prepared carbon fiber/aramid fiber paper-based electromagnetic shielding material was the best, and the total electromagnetic shielding effectiveness reached 22.25 dB. High temperature hot pressing treatment shown that the total shielding effectiveness of paper-based materials with different carbon fiber content can be improved about 5.91 dB under the conditions of temperature 240 ℃ and pressure 10 MPa for 5 minutes.
Key words:  electromagnetic interference shielding    wet-forming process    carbon fiber paper    fiber length
发布日期:  2025-05-29
ZTFLH:  TQ342+.72  
  TQ342+.74  
基金资助: 陕西省技术创新引导专项(基金)(2023GXLH-077);国家自然科学基金(22378248;22308208);龙游县科学技术局重大科技攻关课题(JHXM2022140);浙江省尖兵领雁研发攻关计划(2022C01066);济南市新高校20条引进创新团队(202333012);陕西省军民融合专项(陕融办发 【2024】22 号)
通讯作者:  *陆赵情,二级教授、博士研究生导师、现任现任陕西科技大学副校长、教育部轻化工助剂化学与技术重点实验室主任、中国轻工业纸基功能材料重点实验室主任等职,主要从事高性能纤维纸基功能材料的研究工作。luzhaoqing302@163.com
贾峰峰,讲师、师资博士后,现任西安市高性能纤维和纸基功能材料重点实验室副主任,主要从事先进纤维纸基结构与功能材料研究。5197@sust.edu.cn   
作者简介:  龙学莉,现为陕西科技大学轻工科学与工程学院硕士研究生,在陆赵情教授的指导下开展研究工作。主要从事压裂液生产应用、纸基功能材料研究。
引用本文:    
龙学莉, 陆赵情, 王阮玉, 贾峰峰, 李思齐, 黄涛, 徐明源. 碳纤维长度对碳纤维纸基材料电磁屏蔽性能影响分析[J]. 材料导报, 2025, 39(11): 24030236-8.
LONG Xueli, LU Zhaoqing, WANG Ruanyu, JIA Fengfeng, LI Siqi, HUANG Tao, XU Mingyuan. The Effect Analysis of Carbon Fiber Length on Electromagnetic Interference Shielding Performance of Carbon Fiber Composite Paper. Materials Reports, 2025, 39(11): 24030236-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030236  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24030236
1 Liu P, Sun J, Wang Y Y, et al. Hi-Tech Fiber and Application, 2023, 48(4), 39(in Chinese).
刘萍, 孙静, 王玉阳, 等. 高科技纤维与应用, 2023, 48(4), 39.
2 Liu B Y, Wang X J, Yang J, et al. Chemical Research, 2015, 26(2), 111(in Chinese)
刘保英, 王孝军, 杨杰, 等. 化学研究, 2015, 26(2), 111.
3 Zhang L F, Wang Q, Xu E, et al. New Chemical Materials, 2018, 46(10), 161(in Chinese)
张龙飞, 王奇, 徐恩, 等. 化工新型材料, 2018, 46(10), 161.
4 Zhang Y L, Qi W Z, Sun L P. Forest Engineering, 2013, 29(1), 54(in Chinese).
张延林, 齐万智, 孙丽萍. 森林工程, 2013, 29(1), 54.
5 Hua F G, Wu S, Tong S H, et al. China Pulp & Paper, 2019, 38(4), 41(in Chinese)
华飞果, 吴帅, 童树华, 等. 中国造纸, 2019, 38(4), 41.
6 Tang T T, Zhang Y Y, Zhang J L, et al. China Pulp & Paper Industry, 2020, 41(2), 6(in Chinese).
唐婷婷, 张园园, 张佳琳, 等. 中华纸业, 2020, 41(2), 6.
7 Guo Z Z, Jia F F, Dong J Y, et al. China Pulp & Paper, 2022, 41(9), 1(in Chinese).
郭子瞻, 贾峰峰, 董佳玥, 等. 中国造纸, 2022, 41(9), 1.
8 Sun L Z, Hu J, Liang Y. Chinese Journal of Power Sources, 2010, 34(4), 328(in Chinese).
孙励志, 胡健, 梁云. 电源技术, 2010, 34(4), 328.
9 Zhong L X, Zhang M Y, Peng X W. Paper and Paper Making, 2009, 28(3), 18(in Chinese)
钟林新, 张美云, 彭新文. 纸和造纸, 2009, 28(3), 18.
10 Ling X X, Qin D, Wang S H, et al. Fine Chemicals, 2021, 38(1), 147(in Chinese).
令旭霞, 秦栋, 王士华, 等. 精细化工, 2021, 38(1), 147.
11 Qiao Y, Wang Y, Yang J, et al. Composites Part A: Applied Science and Manufacturing, 2023, 172, 107618.
12 Munalli D, Dimitrakis G, Chronopoulos D, et al. Composites Part B:Engineering, 2019, 173, 106906.
13 Li H B, Fang G G, Deng Y J, et al. China Pulp & Paper Industry, 2015, 36(6), 6(in Chinese).
李红斌, 房桂干, 邓拥军, 等. 中华纸业, 2015, 36(6), 6.
14 Huang H, Huang K. China Pulp & Paper Industry, 2014, 35(8), 6(in Chinese).
黄鸿, 黄鲲. 中华纸业, 2014, 35(8), 6.
15 Zhang M Y, Zhong L X, Peng X W. China Pulp & Paper Industry, 2008(6), 10(in Chinese).
张美云, 钟林新, 彭新文. 中华纸业, 2008(6), 10.
16 Dong J Y, Jia F F, Guo Z Z, et al. China Synthetic Fiber Industry, 2022, 45(6), 14(in Chinese).
董佳玥, 贾峰峰, 郭子瞻, 等. 合成纤维工业, 2022, 45(6), 14.
17 Zhong L X. Study on the proparation and properties of the carbon fiber conductive shielding paper. Master’s Thesis, Shaanxi University of Science and Technology, China, 2008(in Chinese).
钟林新. 碳纤维导电屏蔽纸的研制及其性能研究. 硕士学位论文, 陕西科技大学, 2008.
18 Zhang K, Wu L F, Gui T J, et al. Materials Reports, 2021, 35(S2), 513(in Chinese).
张凯, 吴连锋, 桂泰江, 等. 材料导报, 2021, 35(S2), 513.
19 Hu Q L, Duan Y F, Zheng X H, et al. Journal of Alloys and Compounds, 2023, 935, 168152.
20 方帅男, 宋佃凤, 郁国强, 等. 中国专利, CN114369955B, 2023-04-25.
21 Wu J H, Guo D L, Liu T, et al. China Pulp & Paper, 2020, 39(7), 69(in Chinese).
吴锦涵, 郭大亮, 刘涛, 等. 中国造纸, 2020, 39(7), 69.
22 Shi Y Q, Wu X Y, Zhang Y, et al. Failure Analysis and Prevention, 2021, 16(6), 426(in Chinese).
史有强, 吴昕昱, 张昳, 等. 失效分析与预防, 2021, 16(6), 426.
23 Liang J Y, Gu Y, Bai M, et al. Composites Part A: Applied Science and Manufacturing, 2019, 121, 289.
24 Han W J, Zhao C S, Chen K F, et al. China Pulp & Paper Industry, 2010, 31(4), 22(in Chinese).
韩文佳, 赵传山, 陈克复, 等. 中华纸业, 2010, 31(4), 22.
25 Guo Z Z. Structural construction and performance research of cellulose nanofiber-based electromagnetic interference shielding composite films. Ph. D. Thesis, Xi’an University of Technology, 2023(in Chinese).
郭铮铮. 纤维素纳米纤维基电磁屏蔽复合薄膜的结构构筑及性能研究. 博士学位论文, 西安理工大学, 2023.
26 Ning S P, Wang M J, Luo S L, et al. Journal of Alloys and Compounds, 2023, 958, 170510.
27 Gu H, Zhou S, Hong X H, et al. Journal of Yangzhou Polytechnic College, 2015, 19(1), 44(in Chinese).
顾昊, 周胜, 洪兴华, 等. 扬州职业大学学报, 2015, 19(1), 44.
28 Zeng W X, Chen H M, Huang Y S, et al. China Pulp & Paper Industry, 2021, 42(18), 13(in Chinese).
曾伟新, 陈焕明, 黄元盛, 等. 中华纸业, 2021, 42(18), 13.
29 Wang Y X, Wang J, Liu Z H, et al. Journal of Materials Research and Technology, Volume 27, 2023, 4625.
30 Cao X H, Chen J W. Paper Science & Technology, 2018, 37(5), 6(in Chinese).
曹雪鸿, 陈继伟. 造纸科学与技术, 2018, 37(5), 6.
31 Wang X. Paper Technology & Application, 2014, 42(3), 18(in Chinese).
王鑫. 黑龙江造纸, 2014, 42(3), 18.
32 Shi J F, Kong W W, Zou K K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130959.
33 Wang R N. Study on the mechanism of improving the structure and pro-perties of p-aramid paper by hot calendaring. Master’s Thesis, Shaanxi University of Science and Technology, China, 2017(in Chinese).
王茹楠. 热压改善对位芳纶纸结构和性能的机理研究. 硕士学位论文, 陕西科技大学, 2017.
34 Tan Y, Han X, Qi X Y. Shandong Chemical Industry, 2021, 50(13), 46(in Chinese).
谭媛, 韩香, 齐肖阳. 山东化工, 2021, 50(13), 46.
35 Song R D, Wu G J, Chen J X, et al. China Plastics, 2021, 35(11), 138(in Chinese).
宋仁达, 武高健, 陈俊祥, 等. 中国塑料, 2021, 35(11), 138.
36 Song B, Huang Y W, Zu W H, et al. Guangzhou Chemistry, 2021, 46(1), 1(in Chinese).
宋斌, 黄月文, 祖伟皓, 等. 广州化学, 2021, 46(1), 1.
37 Pei H, Zhang X J, Shen Z M, et al. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2008(3), 49(in Chinese).
裴浩, 张学军, 沈曾民, 等. 北京化工大学学报(自然科学版), 2008(3), 49.
38 Jia F F, E S F, Chen S S, et al. Materials Reports, 2023, 37(8), 171(in Chinese).
贾峰峰, 俄松峰, 陈珊珊, 等. 材料导报, 2023, 37(8), 171.
39 Zhang S F, Li P H, Liu Y, et al. Acta Materiae Compositae Sinica, 2017, 34(8), 1704(in Chinese).
张素风, 李鹏辉, 刘媛, 等. 复合材料学报, 2017, 34(8), 1704.
[1] 汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
[2] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[3] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[4] 陈畅, 丁学成, 酒少武, 陈延信. 纤维特性对磷酸镁基免蒸压加气混凝土性能的影响[J]. 材料导报, 2025, 39(10): 24050176-7.
[5] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[6] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[7] 陶德昌, 文鑫, 李雪丽, 严坤, 赵青华, 夏明, 杨晨光, 王栋. 超级柔韧性和优异电磁屏蔽性能的PVA-co-PE纳米纤维覆铜膜[J]. 材料导报, 2024, 38(14): 23030255-8.
[8] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[9] 尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
[10] 丁聪, 任金明, 王永明, 李新宇, 俞兵, 郭丽萍. 高延性水泥基复合材料用短切PVA纤维的长度优选研究[J]. 材料导报, 2023, 37(13): 21080025-8.
[11] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[12] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[13] 刘艳辉, 马鸣龙, 张奎, 李兴刚, 李永军, 石国梁, 袁家伟. 镁合金电磁屏蔽性能的研究进展[J]. 材料导报, 2022, 36(18): 20070297-6.
[14] 张凯, 吴连锋, 桂泰江, 丛巍巍. 电磁屏蔽材料的研究与进展[J]. 材料导报, 2021, 35(z2): 513-515.
[15] 吴磊, 陶忠, 赵志曼, 陶燕, 张毅, 刘卓. 基于NSGM(1,3)模型的短切聚丙烯纤维-磷建筑石膏复合材料强度预测[J]. 材料导报, 2021, 35(z2): 655-659.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed