Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 25020072-9    https://doi.org/10.11896/cldb.25020072
  无机非金属及其复合材料 |
水系铵离子电池研究进展
孙淑敏1, 雷海波1, 吕署虎1, 王培远1,2,*, 曹霞1,3,*
1 郑州轻工业大学材料与化学工程学院,郑州 450001
2 郑州轻工业大学河南省表界面科学重点实验室,郑州 450001
3 环境污染治理与生态修复河南省协同创新中心,郑州 450001
Research Progress of Aqueous Ammonium-ion Batteries
SUN Shumin1, LEI Haibo1, LYU Shuhu1, WANG Peiyuan1,2,*, CAO Xia1,3,*
1 School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
2 Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, China
3 Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration of Henan Province, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 28805KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,电池技术在消费电子设备、新能源汽车及各类储能系统中得到广泛应用,但传统电池在使用过程中存在的安全隐患日益引发关注。相较于采用有机电解液的电池,新型水系电池凭借其独特的安全性和环保特性,逐渐成为储能领域的重要研究方向。与当前普遍研究的金属离子(如Li+、Na+、Zn2+)相比,NH4+具有来源丰富、摩尔质量低的优势,加之其水合离子半径显著小于上述金属离子,使得水系铵离子电池(AAIBs)成为研究热点。尽管多种电极材料(包括无机与有机材料)已被开发为NH4+的存储载体,并在AAIBs研究中取得了一定进展,但这些材料在实际测试与应用中仍面临诸多挑战与限制。本文系统综述了近年来AAIBs的研究进展:首先概述AAIBs的基本原理与特性,继而分别从正极材料、负极材料及电解质三个方面阐述最新成果,最后针对AAIBs的发展前景、现存问题及潜在解决方案进行总结与展望,以期为推动AAIBs及其电极材料的深入研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙淑敏
雷海波
吕署虎
王培远
曹霞
关键词:  电化学储能  水系  铵离子电池  电极材料  电解质    
Abstract: In recent years, battery technology has been widely applied in consumer electronic devices, new energy vehicles, and various energy sto-rage systems. However, the safety concerns associated with conventional batteries during usage have increasingly attracted attention. Compared to batteries using organic electrolytes, novel aqueous batteries are gradually emerging as a significant research direction in the energy sto-rage field due to their unique safety advantages and environmental benefits. In contrast to the commonly studied metal ions (such as Li+, Na+, Zn2+), NH4+ has become a research hotspot for aqueous ammonium ion batteries (AAIBs) owing to its abundant sources, low molar mass, and significantly smaller hydrated ion radius compared to the aforementioned metal ions. Although various electrode materials (including inorganic and organic materials) have been developed as carriers for NH4+ storage and some progress has been made in AAIBs research, these materials still face numerous challenges and limitations in practical testing and applications. This paper systematically reviews the recent research progress in AAIBs. It first outlines the basic principles and characteristics of AAIBs, then elaborates on the latest achievements from the perspectives of ca-thode materials, anode materials, and electrolytes, and finally summarizes and prospects the development prospects, existing problems, and potential solutions for AAIBs, aiming to provide references for promoting in-depth research on AAIBs and their electrode materials.
Key words:  electrochemical energy storage    aqueous    ammonium-ion battery    electrode material    electrolyte
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金联合重点项目(U23A20579);河南省自然科学基金(242300421258);河南省重点研发与推广专项(科技攻关)(252102240010)
通讯作者:  *王培远,郑州轻工业大学材料与化学工程学院副教授、硕士研究生导师。目前主要研究领域为电化学、能源转换与存储材料。peiyuanwang@zzuli.edu.cn
曹霞,郑州轻工业大学材料与化学工程学院教授、硕士研究生导师。目前主要研究领域为环境污染防治与能源规划。2020003@zzuli.edu.cn   
作者简介:  孙淑敏,郑州轻工业大学材料与化学工程学院副教授、硕士研究生导师。目前主要研究领域为电化学、能源转换与存储材料。
引用本文:    
孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
SUN Shumin, LEI Haibo, LYU Shuhu, WANG Peiyuan, CAO Xia. Research Progress of Aqueous Ammonium-ion Batteries. Materials Reports, 2025, 39(19): 25020072-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020072  或          https://www.mater-rep.com/CN/Y2025/V39/I19/25020072
1 Khademi M M, Kasaeian. Energy, 2025, 314, 134259.
2 Kyei K S, Boateng K H, Frimpong A J. Clean Energy, 2025, 9(2), 190.
3 Wu K, Ning F, Yi J, et al. Journal of Energy Chemistry, 2022, 69, 237.
4 Li Q, Han L, Luo Q, et al. Batteries & Supercaps, 2022, 5(4), e202100417.
5 Yi J, Liu Y, Qiao Y, et al. ACS Energy Letters, 2017, 2(6), 1378.
6 Braff W A, Mueller J M, Trancik J E. Nature Climate Change, 2016, 6(10), 964.
7 Guerra O J, Zhang J, Eichman J, et al. Energy & Environmental Science, 2020, 13(7), 1909.
8 Fornalczyk A, Turek S A, Zielinska A, et al. Energies, 2025, 18, 398.
9 Karimianfard H. Journal of Energy Storage, 2025, 110, 115259.
10 Kim H, Kim H, Ding Z, et al. Advanced Energy Materials, 2016, 6(19), 1600943.
11 Yang Y, Bremner S, Menictas C, et al. Renewable and Sustainable Energy Reviews, 2018, 91, 109.
12 Chombo P V, Laoonual Y. Journal of Power Sources, 2020, 478, 228649.
13 Huang J, Guo Z, Ma Y, et al. Small Methods, 2018, 3(1), 1800272.
14 Pu W J, Lu W, Xie K, et al. Materials Reports, 2020, 34(7), 7036 (in Chinese).
浦文婧, 芦伟, 谢凯, 等. 材料导报, 2020, 34(7), 7036.
15 Zhu M, Li X, Shi C, et al. Journal of Energy Storage, 2024, 101, 113686.
16 Liu J, Guo K, Guo W, et al. Angewandte Chemie International Edition, 2025, 64, e202424494.
17 Itaya K, Ataka T, Toshima S. Journal of the American Chemical Society, 1982, 104(18), 4767.
18 Hermes M, Scholz F. Journal of Solid State Electrochemistry, 1997, 1(3), 215.
19 Yegnaraman V, Kim K J, Gomathi H, et al. The Journal of Physical Chemistry B, 2008, 112(4), 1149.
20 Wessells C D, Peddada S V, McDowell M T, et al. Journal of the Electrochemical Society, 2011, 159(2), A98.
21 Wu Y, Xu Z, Nan L, et al. ACS Applied Materials & Interfaces, 2023, 15(9), 12434.
22 Shu J, Zhang X K, Xia M T, et al. Nano-Micro Letters, 2021, 13, 139.
23 Dong S Y, Shin W, Jiang H, et al. Chemistry-a European Journal, 2019, 5(6), 1537.
24 Xiang K X, Xing L, Chen H, et al. Journal of Alloys and Compounds, 2022, 925, 166652.
25 Wu Q L, Xu W W, Zhang L, et al. Electrochimica Acta, 2020, 360, 137008.
26 Song Y, Pan Q, Lv H, et al. Angewandte Chemie Internatianal Edition, 2021, 60(11), 5718.
27 Liu X X, Yang D, Song Y, et al. Advanced Functional Materials, 2021, 31(32), 2100477.
28 Herren F, Fischer P, Ludi A, et al. Inorganic Chemistry, 1980, 19, 956.
29 Shu J, Zhang X K, Xia M T, et al. Chemical Engineering Journal, 2021, 421, 127767.
30 Zhang P, Zhang X, Liu D, et al. Batteries & Supercaps, 2024, 7(3), e202300546.
31 Fan L, Shu G, Liu Y, et al. Journal of Materials Science & Technology, 2024, 169, 19.
32 Hu L F, Liu Q, Zhang D Z, et al. Advanced Energy Materials, 2025, 15(4), 2402863.
33 Zhang Y, Huang Z H, Lei L, et al. Advanced Energy Materials, 2025, 15(11), 2404732.
34 Bai X, Yang J, Zhang F, et al. Dalton Transactions, 2023, 52(15), 4923.
35 Mu X J, Song Y, Qin Z, et al. Chemical Engineering Journal, 2023, 453, 139575.
36 Zhou G Y, An X Y, Zhou C Y, et al. Composites Communications, 2020, 22, 100519.
37 Qiu S, Xu Y K, Li X, et al. Electrochemistry Communications, 2021, 122, 106880.
38 Ding J, Chen H, Lou X M, et al. Ionics, 2023, 29(12), 5275.
39 Yu H X, Fan L Y, Yan H H, et al. Chemelectrochem, 2022, 9(15), e202200492.
40 Li S Y, Xia M T, Xiao C X, et al. Dalton Transactions, 2021, 50(19), 6520.
41 Shen Y H, Zou J, Lan H H, et al. Advanced Functional Materials, 2024, 2400598.
42 Holoubek J J, Jiang H, Leonard D, et al. Chemical Communications, 2018, 54(70), 9805.
43 Han J, Zarrabeitia M, Mariani A, et al. Advanced Materials, 2022, 34(32), 2201877.
44 Yang C Y, Chen J, Qing T T, et al. Joule, 2017, 1(1), 122.
45 Huang S, Wan F, Bi S S, et al. Angewandte Chemie International Edition, 2019, 58(13), 4313.
46 Wang Z F, Li H F, Tang Z J, et al. Advanced Functional Materials, 2018, 28(48), 1804560.
47 Kwon H J, Osada Y, Gong J P. Polymer Journal, 2006, 38(12), 1211.
48 Zhi C Y, Liang G J, Wang Y L, et al. Advanced Materials, 2020, 32(14), 1907802.
49 Wang P, Zhang Y F, Jiang H M, et al. Chemical Engineering Journal, 2022, 427, 131548.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 易宗琳, 邸会芳, 王振兵, 苏方远, 陈成猛. 高电压双电层超级电容器电解质的研究进展[J]. 材料导报, 2025, 39(9): 24030012-8.
[3] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[4] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[5] 张笑儒, 宋静, 罗来马, 孙宏骞, 赵聪聪, 田硕, 田亮亮, 吴玉程. 固态锂离子电池电解质材料应用性能的研究进展[J]. 材料导报, 2025, 39(13): 24060166-20.
[6] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[7] 刘庆, 欧阳雪琼, 刘文财, 吕洋, 王双喜. 流延工艺制备氧化锆燃料电池薄膜的研究进展[J]. 材料导报, 2025, 39(10): 24020149-10.
[8] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[9] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[10] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[11] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[12] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[13] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[14] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[15] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed