Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 25020044-8    https://doi.org/10.11896/cldb.25020044
  无机非金属及其复合材料 |
钙硅比以及不同含铝材料对水合陶瓷体系抗高温性能的影响
庞学玉1,2, 王闯闯1,2, 孙立君3, 黄贤斌1,2, 吕开河1,2, 孙金声1,2,*
1 深层油气全国重点实验室(中国石油大学(华东)),山东 青岛 266580
2 中国石油大学(华东)石油工程学院,山东 青岛 266580
3 中石化胜利油田石油工程技术研究院,山东 东营 257000
Effect of the Ca/Si Ratio and Different Aluminum-containing Materials on the High-temperature Resistance of the Hydroceramic System
PANG Xueyu1,2, WANG Chuangchuang1,2, SUN Lijun3, HUANG Xianbin1,2, LYU Kaihe1,2, SUN Jinsheng1,2,*
1 State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao 266580, Shandong, China
2 School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
3 Petroleum Engineering Technology Institute of Sinopec Shengli Oilfield, Dongying 257000, Shandong, China
下载:  全 文 ( PDF ) ( 17086KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CaO-SiO2-Al2O3水合陶瓷体系在深井超深井固井方面应用前景广阔,但钙硅比以及不同含铝材料的使用对水合陶瓷体系抗高温性能的影响很大。以α氧化铝、纳米活性氧化铝以及两种不同组成的铝酸钙粉为主要含铝材料,研究了其对不同钙硅比的水合陶瓷体系(密度为1.65 g/cm3)在高温养护后(240 ℃/50 MPa,养护2天、30天和90天)的力学性能、孔径结构和矿物组成的影响。结果表明,当钙硅比为0.5时,α氧化铝的加入会降低体系的高温稳定性;α氧化铝和纳米活性氧化铝同时加入可大幅度降低体系的早期孔隙度(2天),但是会带来后期孔隙度的快速增大以及长期强度衰退问题;用铝酸钙替代氧化铝则会大幅降低体系的力学性能。当钙硅比为1时,α氧化铝的加入可提升体系的早期力学性能;α氧化铝和纳米活性氧化铝的同时加入会进一步提升体系的力学性能,但这两种体系的90天长期强度均出现明显衰退;用铝酸钙替代氧化铝后体系的力学性能得到进一步提升(抗压强度最高可达22.9 MPa)且长期稳定性好。铝酸钙的成分对水合陶瓷体系的性能有一定的影响,含有更多铝酸一钙和硅铝酸二钙的铝酸钙粉对水合陶瓷体系的抗高温性能优化效果更好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庞学玉
王闯闯
孙立君
黄贤斌
吕开河
孙金声
关键词:  水合陶瓷体系  含铝材料  力学性能  孔径结构  矿物组成    
Abstract: The CaO-SiO2-Al2O3 hydroceramic system has broad application prospects in well cementing for deep and ultra-deep wells. However, the Ca/Si ratio and the use of different aluminum-containing materials significantly influence the high-temperature resistance of the hydroceramic system. This study investigated the effects of α-Al2O3, nano-activated alumina, and two different compositions of calcium aluminate powder on the mechanical properties, pore structure, and mineral composition of hydroceramic systems with different Ca/Si ratios (The density was 1.65 g/cm3) after high-temperature curing (cured under 240 ℃/50 MPa for 2, 30, and 90 days). The results indicated that when the Ca/Si ratio was 0.5, the addition of α-Al2O3 decreased the system's high-temperature stability. The simultaneous addition of α-Al2O3 and nano-activated alumina significantly decreased the system's early porosity (at 2 days), but it also led to a rapid increase in porosity and a decline in long-term strength in later stages. Replacing alumina with calcium aluminate significantly decreased the system's mechanical properties. When the Ca/Si ratio was 1, the addition of α-Al2O3 somewhat enhanced the early mechanical properties of the system. The simultaneous addition of α-Al2O3 and nano-activated alumina further enhanced the system's mechanical properties. However, the long-term strength of these two systems significantly decreased at 90 days. Replacing alumina with calcium aluminate noticeably decreased the pore size of the system and further enhanced mechanical properties (the maximum compressive strength reaching up to 22.9 MPa) and long-term stability. The composition of calcium aluminate had a certain impact on the performance of the hydroceramic system, with calcium aluminate powder containing more CaO·Al2O3 and 2CaO·Al2O3·SiO2 showing better optimization effects on the high-temperature resistance of the hydroceramic system.
Key words:  hydroceramic system    aluminum-containing material    mechanical property    pore structure    mineral composition
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TE256  
基金资助: 中国石油大学(华东)深层油气全国重点实验室自主研究课题(SKLDOG2024-ZYTS-11);国家自然科学基金基础科学中心项目(52288101)
通讯作者:  *孙金声,博士,中国工程院院士,主要从事钻完井工作液、储层保护、防漏堵漏理论与技术等方面的研究。sunjsdri@cnpc.com.cn   
作者简介:  庞学玉,博士,中国石油大学(华东)石油工程学院油气井工程研究所所长,主要从事固井水泥材料科学与应用、井筒水泥环封隔完整性领域的研究。
引用本文:    
庞学玉, 王闯闯, 孙立君, 黄贤斌, 吕开河, 孙金声. 钙硅比以及不同含铝材料对水合陶瓷体系抗高温性能的影响[J]. 材料导报, 2025, 39(19): 25020044-8.
PANG Xueyu, WANG Chuangchuang, SUN Lijun, HUANG Xianbin, LYU Kaihe, SUN Jinsheng. Effect of the Ca/Si Ratio and Different Aluminum-containing Materials on the High-temperature Resistance of the Hydroceramic System. Materials Reports, 2025, 39(19): 25020044-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020044  或          https://www.mater-rep.com/CN/Y2025/V39/I19/25020044
1 Li Y, Xue Z J, Cheng Z, et al. China Petroleum Exploration, 2020, 25(1), 45 (in Chinese).
李阳, 薛兆杰, 程喆, 等. 中国石油勘探, 2020, 25(1), 45.
2 Yu J D, Zheng M, Li J Z, et al. Natural Gas Geoscience, 2018, 29(10), 1398 (in Chinese).
于京都, 郑民, 李建忠, 等. 天然气地球科学, 2018, 29(10), 1398.
3 Wang H G, Huang H C, Bi W X, et al. Natural Gas Industry, 2021, 41(8), 163 (in Chinese).
汪海阁, 黄洪春, 毕文欣, 等. 天然气工业, 2021, 41(8), 163.
4 Pang X Y, Qin J K, Sun L J, et al. Cement and Concrete Research, 2021, 144, 106424.
5 Zhang J F, Xu M, Gao L L, et al. Oil Drilling & Production Technology, 2003(3), 19 (in Chinese).
张景富, 徐明, 高莉莉, 等. 石油钻采工艺, 2003(3), 19.
6 Meller N, Hall C, Phipps J S. Materials Research Bulletin, 2005, 40(5), 715.
7 Wang C C, Pang X Y, Ren J, et al. Ceramics International, 2024, 50(21), 42559.
8 Roy D M. American Mineralogist, 1958, 43(11), 1009.
9 Roy D M, White E L, Langton C A, et al. In:SPE Oilfield and Geothermal Chemistry Symposium. Houston, 1979, pp. 7877.
10 Meller N, Kyritsis K, Hall C. Cement and Concrete Research, 2009, 39(1), 45.
11 Yang J B, Li D X, Fang Y. Materials, 2017, 10(7), 695.
12 Haas J. Experimental study and thermodynamic modelling of CaO-SiO2-(Al2O3)-H2O system. Ph. D. Thesis, University of Bourgogne, FR, 2012.
13 Baltakys K, Siauciunas R. Journal of Materials Science, 2006, 41(15), 4799.
14 Baltakys K, Eisinas A, Doneliene J, et al. Ceramics International, 2019, 45(2), 2881.
15 Melichar J, Černý V, Fleischhacker J, et al. Materials Science Forum, 2018, 916, 195.
16 Bradbury C, Callaway P M, Double D D. Materials Science and Engineering, 1976, 23(1), 43.
17 Klaus S R, Neubauer J, Goetz N F. Cement and Concrete Research, 2013, 43, 62.
18 Xie G Q, Zhang Y Z. Cement, 2002(11), 23 (in Chinese).
谢国刚, 张宇震. 水泥, 2002(11), 23.
19 Bai M K, Ma J Q. Cement, 2018(8), 32 (in Chinese).
白明科, 马金强. 水泥, 2018(8), 32.
20 American Petroleum Institute. Recommended practice for testing well cements, second edition, US, 2013, pp. 25.
21 Liu J, Qiu X Z, Zhang Y H. In:2016 International Conference on Architectural Engineering and Civil Engineering. Shanghai, China, 2016, pp. 5.
22 Kapeluszna E, Kotwica Ł, Róycka A, et al. Construction and Building Materials, 2017, 155, 643.
23 Merlino S, Bonaccorsi E, Armbruster T. European Journal of Mineralogy, 2000, 12(2), 411.
24 Black L, Garbev K, Stumm A. Advances in Applied Ceramics, 2009, 108(3), 137.
25 Henderson C M B, Bell A M T, Kohn S C, et al. Mineralogical Magazine, 1998, 62(2), 165.
26 Rivas-Mercury J M, Pena P, De-Aza A H, et al. Journal of the European Ceramic Society, 2008, 28(9), 1737.
27 Traore K, Kabre T S, Blanchart P. Ceramics International, 2003, 29(4), 377.
28 Guo X L, Meng F J, Shi H S. Construction and Building Materials, 2017, 133, 253.
29 Seryotkin Y V, Joswig W, Bakakin V V, et al. European Journal of Mi-neralogy, 2003, 15(3), 475.
30 L’Hôpital E, Lothenbach B, Kulik D A, et al. Cement and Concrete Research, 2016, 85, 111.
31 Shaw S, Henderson C M B, Komanschek B U. Chemical Geology, 2000, 167(1), 141.
32 Zhang X, Yang J, Li K, et al. Cement and Concrete Composites, 2020, 112, 103681.
33 Liou J G. Journal of Petrology, 1971, 12(2), 379.
34 Fridriksson T, Carey J W, Bish D L, et al. American Mineralogist, 2003, 88(7), 1060.
35 Lin R S, Han Y, Wang X Y. Cement and Concrete Composites, 2021, 116, 103871.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed