Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24120134-8    https://doi.org/10.11896/cldb.24120134
  无机非金属及其复合材料 |
原位生长WO3/Bi2WO6构筑界面内建电场增强光电极电荷分离与传输的研究
张颁潮1, 程厚燕2,3,*
1 郑州轻工业大学艺术设计学院,郑州 450002
2 中国农业机械化科学研究院集团有限公司,北京 100083
3 北京金轮坤天特种机械有限公司,北京 100083
Study on Constructing the Interface Built-in Electric Fields Through In-situ Growth of WO3/Bi2WO6 to Enhance the Charge Separation and Transfer of Photoelectrodes
ZHANG Banchao1, CHENG Houyan2,3,*
1 School of Art & Design, Zhengzhou University of Light Industry, Zhengzhou 450002, China
2 Chinese Academy of Agricultural Mechanization Science Group Co., Ltd., Beijing 100083, China
3 Beijing Jinlunkuntian Special Machine Co., Ltd., Beijing 100083, China
下载:  全 文 ( PDF ) ( 28833KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光电催化是实现太阳能转化成可再生能源的重要储能技术,材料的光吸收效率、电荷分离传输效率以及表面反应效率等因素直接影响着光电催化反应的整体效率,其中又以电荷分离传输效率最为关键。WO3具有化学稳定性高、空穴扩散距离长及禁带宽度适中等优点,被广泛应用于光电催化反应。但受限于电荷分离传输效率低导致的光电催化效率低下问题,WO3基光电催化材料在光电催化的应用中仍然面临较大挑战。针对该问题,本工作通过原位生长法将Bi2WO6包覆于WO3表面形成异质结,从而构筑界面内建电场,有效提升光生电荷的分离传输驱动力。经材料结构和光电化学性能表征,结果表明,原位生长制备的WO3/Bi2WO6复合光阳极膜具有Ⅱ型异质结结构,其表面光电压达8.7 μV,分别是WO3和Bi2WO6的2.42和1.81倍;光电流密度达3.28 mA·cm-2@1.23 V vs.RHE,较WO3和Bi2WO6分别提升91%和143%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张颁潮
程厚燕
关键词:  氧化钨  钨酸铋  内建电场  电荷分离传输  异质结    
Abstract: Photoelectrocatalysis is considered a crucial energy storage technology for converting solar energy into renewable energy sources. The photoelectrochemical reaction efficiency is controlled by light harvesting, charge separation and transfer (CST), and surface reaction efficiency, with CST being particularly critical. WO3-based photocatalytic materials have garnered widespread attention due to high chemical stability, long hole diffusion distance, and moderate bandgap. However, the low efficiency of CST in WO3-based photocatalytic materials remains a challenge, hampering their practical applications. To address this issue, this work uses a method of in-situ growth to coat Bi2WO6 on the surface of WO3 to form a heterojunction and construct built-in electric fields at the interface to effectively improve the driving force of photogenerated charge separation and transmission. The results showed that the WO3/Bi2WO6 composite photoanode film has a type Ⅱ heterojunction structure, and its surface photovoltage reaches 8.7 μV, which is 142% and 81% higher than those of WO3 and Bi2WO6, respectively. The photocurrent density is 3.28 mA·cm-2 @1.23 V vs. RHE, which is 91% and 143% higher than those of WO3 and Bi2WO6, respectively.
Key words:  tungsten oxide    bismuth tungstate    built-in electric field    charge separation and transfer    heterojunction
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TB34  
通讯作者:  *程厚燕,材料科学与工程专业,工学博士,中国农业机械化科学研究院集团有限公司、北京金轮坤天特种机械有限公司工程师。主要从事光(电)催化材料、储能材料、热障陶瓷材料等方面的研究。chyzxhy123@163.com   
作者简介:  张颁潮,材料科学与工程专业,工学硕士,郑州轻工业大学实验师,研究领域为氧化物陶瓷材料方向。
引用本文:    
张颁潮, 程厚燕. 原位生长WO3/Bi2WO6构筑界面内建电场增强光电极电荷分离与传输的研究[J]. 材料导报, 2025, 39(19): 24120134-8.
ZHANG Banchao, CHENG Houyan. Study on Constructing the Interface Built-in Electric Fields Through In-situ Growth of WO3/Bi2WO6 to Enhance the Charge Separation and Transfer of Photoelectrodes. Materials Reports, 2025, 39(19): 24120134-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120134  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24120134
1 Walter M, Warren E, McKone J, et al. Chemical Reviews, 2010, 110, 6446.
2 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38, 253.
3 Wang X, Wang Z, Yu W, et al. Materials Reports, 2024, 38(2), 55 (in Chinese).
王雪怡, 王智远, 余伟, 等. 材料导报, 2024, 38(2), 55.
4 Zhan F, Wen G, Li R, et al. Physical Chemistry Chemical Physics, 2024, 26, 11182.
5 Yu S, Yang, J, Yang X, et al. Materials Reports, 2023, 37(4), 44 (in Chinese).
于舒睿, 杨继凯, 杨雪, 等. 材料导报, 2023, 37(4), 44.
6 Li W, Da P, Zhang Y, et al. ACS Nano, 2014, 8, 11770.
7 Fujishima A. Nature, 1972, 238, 37.
8 Landman A, Dotan H, Shter G. E, et al. Nature Materials, 2017, 16, 646.
9 Zheng G, Wang J, Liu H, et al. Nanoscale, 2019, 11, 18968.
10 Ni S, Qu H, Xing H, et al. Chinese Journal of Chemical Engineering, 2022, 41, 320.
11 Cheng Z, Hu Z, Ma X, et al. The Journal of Physical Chemistry C, 2022, 126, 11510.
12 Yi S, Wulan B, Yan J, et al. Advanced Functional Materials, 2019, 29, 1801902.
13 Pan Q, Zhang C, Xiong Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6, 6378.
14 Li Y, Wu Q, Bu Q, et al. Chinese Journal of Catalysis, 2021, 42, 762.
15 Mali M, Yoon H, Kim M, et al. Applied Physics Letters, 2015, 106, 151603.
16 Zargazi M, Entezari M. Applied Catalysis B, 2019, 242, 507.
17 Zhou Y, Zhang Y, Lin M, et al. Nature Communications, 2015, 6, 8340.
18 Cai F, Xu Y, Long H, et al. China Environmental Science, 2024, 44, 4652 (in Chinese).
蔡奉颖, 许煜航, 龙浩然, 等. 中国环境科学, 2024, 44(8), 4652.
19 Pancielejko A, Łuczak J, Lisowski W, et al. Applied Surface Science, 2021, 569, 151082.
20 Liu C, Yang Y, Li J, et al. Chemical Engineering Journal, 2017, 326, 603.
21 Zhang M, Zhu Y, Li W, et al. Journal of Colloid and Interface Science, 2018, 509, 18.
22 Peleyeju M, Viljoen. Journal of Water Process Engineering, 2021, 40, 101930.
23 Zhang X, Chen J, Jiang S, et al. Journal of Colloid and Interface Science, 2021, 588, 122.
24 Zhu Z, Yan Y, Li J. Journal of Materials Science, 2015, 51, 2112.
25 Gui M, Zhang W, Chang Y, et al. Chemical Engineering Journal, 2012, 197, 283.
26 Wang J, Cheng H, Cui Y, et al. ACS Nano, 2022, 16, 21248.
27 Sungpanich J, Thongtem T, Thongtem S. Journal of Nanomaterials, 2014, 2014, 1.
28 Mohamedkhair A, Drmosh Q, Qamar M, et al. Catalysts, 2021, 11, 381.
29 Huang Y, Kou S, Zhang X, et al. Nanomaterials, 2020, 10(4), 724.
30 Zhan F, Zhao H, Wen G, et al. New Journal of Chemistry, 2023, 47(4), 1620.
31 Wang S, Wang L. Tungsten, 2019, 1, 19.
32 Chen T, Liu L, Hu C, et al. Chinese Journal of Catalysis, 2021, 42, 1413.
33 Chung H, Toe C, Chen W, et al. Small, 2021, 17, e2102023.
34 Yang P, Sun P, Chai Z, et al. Angewandte Chemie International Edition, 2014, 53, 11935.
35 Zhang L, Wang W, Sun S, et al. Applied Catalysis B, 2015, 168-169, 9.
36 Yang J, Ge C, Du J, et al. Advanced Materials, 2018, 30, e1801548.
37 Cai G, Zhu R, Liu S, et al. Advanced Energy Materials, 2021, 2103106.
38 Zhang L, Wang Y, Cheng H, et al. Advanced Materials, 2009, 21, 1286.
39 Xing Z, Hu J, Ma M, et al. Journal of the American Chemical Society, 2019, 141, 19715.
40 Qi R, Liu J, Yuan H, et al. Nanomaterials, 2021, 11, 2221.
41 Li R, Zhan F, Wen G, et al. Catalysts 2024, 14, 828.
42 Zheng J, Song G, Hong J, et al. Crystal Growth & Design, 2014, 14, 6057.
43 Liu Y, Yang Y, Liu Q, et al. Journal of Colloid and Interface Science, 2018, 512, 86.
44 Paik T, Cargnello M, Gordon T, et al. ACS Energy Letters, 2018, 3, 1904.
45 Gurwitz R, Cohen R, Shalish I. Journal of Applied Physics, 2014, 115, 033701.
46 Zhang R, Song C, Kou M, et al. Environmental Science & Technology, 2020, 54, 3691.
47 Liu Y, Cheng M, He Z, et al. Angewandte Chemie International Edition, 2018, 58, 731.
48 Chen R, Fan F, Dittrich T, et al. Chemical Society Reviews, 2018, 47, 8238.
49 Han T, Cao X, Sun K, et al. Nature Communications, 2021, 12, 4952.
50 Hussain Z. Journal of Applied Physics, 2002, 91, 5745.
51 Kim D, Yong K. Applied Catalysis B, 2021, 282, 119538.
52 Salazar-Marín D, Oza G, Real J, et al. Applied Surface Science Advances, 2024, 19, 100536.
[1] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[2] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[3] 梁红玉, 许佳智, 李政, 陆光, 王斌, 李桐宇, 刘玉佳. 广谱响应Cu2(OH)2CO3/g-C3N4异质结的构建及其光催化四环素的降解:降解途径及反应机理[J]. 材料导报, 2025, 39(19): 24080035-6.
[4] 刘奇, 赵莉, 沈冰, 马子伦, 陆佳林, 曲雯雯. Z型分级微球Bi2WO6/CdS/rGO的微波合成及光催化性能研究[J]. 材料导报, 2025, 39(18): 24090195-8.
[5] 李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
[6] 苗瑞霞, 贾小坛, 牛佳美, 晏杰. 二维Janus Ga2SSe/β-Ga2O3异质结在双轴应变调控下的电子及光学特性[J]. 材料导报, 2025, 39(14): 24070065-7.
[7] 张晓君, 韦慧珍, 王维雪, 孙墨杰. WO3复合Eu掺杂g-C3N4催化剂的制备及光催化降解氧氟沙星[J]. 材料导报, 2025, 39(13): 24050169-5.
[8] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[9] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[10] 赵强, 李淑英, 郭智楠, 许琳, 赵一博, 吕靖, 尚建鹏, 郭永, 王俊丽. 氧化亚铜基光催化剂的制备及降解性能研究进展[J]. 材料导报, 2024, 38(14): 22110145-15.
[11] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[12] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[13] 贺亦菲, 杨德仁, 皮孝东. 基于硅/二维层状材料异质结的红外光电探测器研究进展[J]. 材料导报, 2024, 38(1): 22030194-9.
[14] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[15] 夏鹏, 傅萍, 黄金华, 李佳, 宋伟杰. 硅异质结太阳能电池用透明导电氧化物薄膜的研究现状及发展趋势[J]. 材料导报, 2023, 37(9): 22090082-9.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed