Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24090195-8    https://doi.org/10.11896/cldb.24090195
  无机非金属及其复合材料 |
Z型分级微球Bi2WO6/CdS/rGO的微波合成及光催化性能研究
刘奇1, 赵莉1, 沈冰1, 马子伦1, 陆佳林1, 曲雯雯1,2,3,*
1 昆明理工大学理学院,昆明 650500
2 昆明理工大学微波能工程应用及装备技术国家地方联合工程实验室,昆明 650093
3 昆明理工大学非常规冶金省部共建教育部重点实验室,昆明 650093
Microwave Irradiation Synthesis and Photocatalytic Performance of Z-scheme Hierarchical Microspheres Bi2WO6/CdS/rGO
LIU Qi1, ZHAO Li1, SHEN Bing1, MA Zilun1, LU Jialin1, QU Wenwen1,2,3,*
1 Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
2 National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Kunming University of Science and Technology, Kunming 650093, China
3 MOE Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 41516KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过微波溶剂热法制备了Z型微球分级结构的Bi2WO6/CdS/rGO复合光催化剂,探究了石墨烯(rGO)负载量对复合光催化剂性能的影响。结果表明,石墨烯含量为3%(质量分数)的Bi2WO6/CdS/rGO复合材料具有最优异的光催化性能,在可见光照射下,30 min内对RhB的降解率约为99.7%,光催化速率常数分别是Bi2WO6和CdS的4.8倍和14.1倍。复合材料光催化性能的显著增强主要归因于Bi2WO6和CdS形成的Z型异质结和内建电场促进了光生载流子的分离,石墨烯作为电子转移和分离的通道进一步降低了载流子的复合率并延长了光生电子-空穴对的寿命,同时石墨烯大的比表面积和孔隙率以及良好的光吸收特性也是催化剂活性增强的重要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘奇
赵莉
沈冰
马子伦
陆佳林
曲雯雯
关键词:  光催化降解  微波辅助合成  石墨烯  分级微球  Z型异质结    
Abstract: Herein, a novel Z-scheme Bi2WO6/CdS/rGO photocatalyst with hierarchical microsphere structure was fabricated via the microwave-assisted solvothermal method by integrating graphene (rGO) and Bi2WO6/CdS heterojunction. The effect of different graphene loading amounts on the photocatalytic performance of the composite was carefully investigated. The results exhibited that the Bi2WO6/CdS/rGO composite with 3wt% rGO addition could remove approximately 99.7% RhB under visible light irradiation within 30 min. The photocatalytic rate constant was 4.8 and 14.1-fold higher than that of pristine Bi2WO6 and CdS, respectively. The significant promotion in photocatalytic activity of the composite came from the deep conduction band and the strong internal electronic field generated at the Z-scheme heterointerface between Bi2WO6 and CdS boosted the kinetics of photoexcited carriers transfer and separation. Furthermore, the prolonged lifetime of the heterojunction revealed that rGO could act as the electronic transfer channel owing to its excellent electron conductivity, endowing a lower recombination rate of photogenerated electron-hole pairs. Benefited from the broad-spectrum light-harvesting range and the enriched active sites of rGO, the photocatalytic performance of the composite was further enhanced. This work provides a fresh insight that interface engineering based on co-modification of semiconductors can effectively enhance the photocatalytic remediation activity.
Key words:  photocatalytic degradation    microwave-assisted synthesis    graphene    hierarchical microsphere    Z-scheme heterojunction
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  O649  
基金资助: 国家自然科学基金(52262011;51562018)
通讯作者:  *曲雯雯,昆明理工大学教授。主要研究方向包括复合光催化材料的微波合成、功能材料表界面微观结构与性质的第一性原理模拟以及废催化剂的资源再生利用。qwwen77@163.com   
作者简介:  刘奇,昆明理工大学理学院硕士研究生,在曲雯雯教授的指导下开展半导体光催化材料的合成及应用研究。
引用本文:    
刘奇, 赵莉, 沈冰, 马子伦, 陆佳林, 曲雯雯. Z型分级微球Bi2WO6/CdS/rGO的微波合成及光催化性能研究[J]. 材料导报, 2025, 39(18): 24090195-8.
LIU Qi, ZHAO Li, SHEN Bing, MA Zilun, LU Jialin, QU Wenwen. Microwave Irradiation Synthesis and Photocatalytic Performance of Z-scheme Hierarchical Microspheres Bi2WO6/CdS/rGO. Materials Reports, 2025, 39(18): 24090195-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090195  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24090195
1 Alkhadra M A, Su X, Suss M E, et al. Chemical Reviews, 2022, 122(16), 13547.
2 Ruan T, Li P, Wang H, et al. Chemical Reviews, 2023, 123(17), 10584.
3 Lin J, Ye W, Xie M, et al. Nature Reviews Earth & Environment, 2023, 4(11), 785.
4 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
5 Gao W, Li G, Wang Q, et al. Chemical Engineering Journal, 2023, 464, 142694.
6 Deng X, Chen P, Cui R, et al. Applied Catalysis B-Environmental, 2023, 339, 123148.
7 Mandyal P, Guleria A, Sharma R, et al. Journal of Environmental Chemical Engineering, 2022, 10(6), 108918.
8 Kudo A, Hijii S. Chemistry Letters, 1999, 28(10), 1103.
9 Wang R, Xu M, Xie J W, et al. Chemical Journal of Chinese Universities, 2020, 41(6), 1320 (in Chinese).
王蕊, 徐梅, 谢家文, 等. 高等学校化学学报, 2020, 41(6), 1320.
10 Arif M, Mahsud A, Ali A, et al. Chemical Engineering Journal, 2023, 475, 146458.
11 Ren H, Qi F, Labidi A, et al. Applied Catalysis B:Environmental, 2023, 330, 122587.
12 Liu M, Wan Y, Wang Y, et al. Journal of Environmental Chemical Engineering, 2024, 12(2), 112328.
13 Sun C, Wang Y, Su Q. Chemical Physics Letters, 2018, 702, 49.
14 Li J, Zhao Y, Xia M, et al. Applied Catalysis B, 2020, 261, 118244.
15 Huang D, Li J, Zeng G, et al. Chemical Engineering Journal, 2019, 375, 121991.
16 Liu T, Xue F, Wang B, et al. Journal of Catalysis, 2023, 417, 41.
17 Liu X, Wang S Z, Wang S, et al. Royal Society Open Science, 2019, 6(3), 181422.
18 Bao C, Serrano-Lotina A, Niu M, et al. Chemical Engineering Journal, 2023, 466, 142902.
19 Mirzaei A, Neri G. Sensors and Actuators B:Chemical, 2016, 237, 749.
20 Liu W, Wang P, Chen J, et al. Environmental Science and Ecotechnology, 2024, 20, 100414.
21 Shi Y, Li P, Chen H, et al. Nature Communications, 2024, 15(1), 4641.
22 Chen R F, Qu W W, Wang Y J, et al. Materials Reports, 2021, 35(6), 6008 (in Chinese).
陈瑞芳, 曲雯雯, 王一钧, 等. 材料导报, 2021, 35(6), 6008.
23 Wang H, Wang X, Hu P, et al. Applied Catalysis B, 2024, 351, 123956.
24 Qi Z, Chen J, Li Q, et al. Small, 2023, 19(46), 2303318.
25 Yuan C, Lv H, Zhang Y, et al. Carbon, 2023, 206, 237.
26 Wang T, Guo C Y, Zhang L G, et al. International Journal of Hydrogen Energy, 2023, 48, 22021.
27 Arif M, Min Z, Yuting L, et al. Journal of Industrial and Engineering Chemistry, 2019, 69, 345.
28 Hao M, Wei D, Li Z. Energy & Fuels, 2022, 36(19), 11524.
29 Yu H, Chu C, Chu P K. Nanotechnology Reviews, 2017, 6(6), 505.
30 Liang Y, Wang X, An W, et al. Applied Surface Science, 2019, 466, 666.
31 Yuan C, Lv H, Zhang Y, et al. Carbon, 2023, 206, 237.
32 Zhou D, Zhang J, Jin Z, et al. Chemical Engineering Journal, 2022, 450, 138108.
33 Tang Z, He W, Wang Y, et al. Applied Catalysis B, 2022, 311, 121371.
34 Islam M A, Haque F, Rahman K S, et al. Optik, 2015, 126(21), 3177.
35 Shad N A, Zahoor M, Bano K, et al. Inorganic Chemistry Communications, 2017, 86, 213.
36 Brusko V, Khannanov A, Rakhmatullin A, et al. Carbon, 2024, 229, 119507.
37 Li Z, Zhu X M, Liu H, et al. Journal of Nanoparticle Research, 2021, 23, 1.
38 Wang L, Wen M, Wang W Y, et al. Journal of Alloys and Compounds, 2016, 683, 318.
39 Li S, Guo Y, Zhang Q, et al. International Journal of Hydrogen Energy, 2023, 48(67), 26173.
40 Wang X, Liu Y, Liu X, et al. Process Safety and Environmental Protection, 2024, 190, 678.
41 Butler M A, Ginley D S. Journal of the Electrochemical Society, 1978, 125(2), 228.
42 Jia C, Zhang X, Matras-Postolek K, et al. Carbon, 2018, 139, 415.
43 Liu Y, Shi L, Srinivasakannan C, et al. Journal of Alloys and Compounds, 2024, 997, 174842.
44 Shi F, Huang K, Wang Y, et al. ACS Applied Materials & Interfaces, 2019, 11(19), 17459.
45 Chiu Y H, Lindley S A, Tsao C W, et al. The Journal of Physical Che-mistry C, 2020, 124(21), 11333.
46 Jiang M, Li C, Huang K, et al. ACS Applied Materials & Interfaces, 2020, 12(31), 35113.
47 Chen Z, Yang S, Tian Z, et al. Applied Surface Science, 2019, 469, 657.
[1] 乐祥和, 张晓红, 乔英杰, 白成英, 王晓东, 李茂源, 陈为为. 石墨烯改性热固性树脂复合材料研究进展[J]. 材料导报, 2025, 39(9): 24040177-9.
[2] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[3] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[4] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[5] 龙武剑, 唐懿, 郑淑仪, 何闯. 氮掺杂石墨烯量子点作为新型碳钢缓蚀剂:从设计到机理[J]. 材料导报, 2025, 39(7): 23100196-10.
[6] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[7] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[8] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[9] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[10] 郭适, 郭启麟, 张瀛博, 巴泓雨, 陆相林, 刘会娥, 陈爽. 石墨烯/碳纳米管复合多孔材料用于光热辅助高黏重油吸附[J]. 材料导报, 2025, 39(13): 24050053-6.
[11] 李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
[12] 刘龙鑫, 张玲, 王瑞涛, 孟腾飞, 刘芳, 谢强, 张冬海. GO/PANI复合颗粒的制备及防腐应用研究进展[J]. 材料导报, 2025, 39(10): 24040205-9.
[13] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[14] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[15] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed