Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24090116-7    https://doi.org/10.11896/cldb.24090116
  金属与金属基复合材料 |
搅拌速度对废电路板酸浸液中脉冲电沉积铜箔的影响
孙艳1, 刘洪军1,2,*, 李亚敏1,2, 李伟盛1,3
1 兰州理工大学材料科学与工程学院,兰州 730050
2 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
3 中核四0四有限公司,兰州 732850
Effect of Stirring Speed on Pulsed Electrodeposition of Copper Foil from Acid Leaching Solution of Waste Printed Circuit Board
SUN Yan1, LIU Hongjun1,2,*, LI Yamin1,2, LI Weisheng1,3
1 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
3 404 Co., Ltd., CNNC, Lanzhou 732850, China
下载:  全 文 ( PDF ) ( 33803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于废电路板酸浸液采用脉冲电沉积工艺制备铜箔,研究了搅拌速度对铜箔组织和性能的影响。研究表明:搅拌速度增加到200 r/min以上可获得铜箔,继续增加搅拌速度,晶粒变细且晶粒之间更加紧密,晶粒取向趋向于(220)晶面的高度择优;搅拌速度为400 r/min时,铜箔的抗拉强度及延伸率均比200 r/min时高1倍多,纯度基本不变,600 r/min时铜箔抗拉强度下降39.8%,延伸率略下降0.07%,纯度下降0.2%。搅拌速度通过控制传质速度来改变晶粒大小和晶面择优取向,从而影响铜箔的组织和性能,搅拌速度为400 r/min时,铜箔的纯度、抗拉强度和延伸率分别达到99.91%、218.9 MPa和20.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙艳
刘洪军
李亚敏
李伟盛
关键词:  废电路板  铜箔  酸浸液  搅拌速度  脉冲电沉积    
Abstract: In this work, copper foil was prepared by pulsed electrodeposition based on the acid leaching solution of waste printed circuit board, and the effect of stirring speed on the microstructure and properties of copper foil was studied. The results show that copper foil can be obtained when the stirring speed is more than 200 r/min. As the stirring speed continues to increase, the grains become finer and more compact, and the grain orientation tends to the highly preferred (220) crystal plane. When the stirring speed is 400 r/min, the tensile strength and elongation of copper foil are more than twice as high as those of 200 r/min, and the purity is almost unchanged. When the stirring speed is 600 r/min, the purity of copper foil decreases from 99.91% to 99.71%, the tensile strength decreases by 39.8%, and the elongation decreases slightly. The stirring speed affects the microstructure and properties of copper foil by controlling the mass transfer rate to change the grain size and preferred orientation of crystal planes. When the stirring speed is 400 r/min, the smooth and dense copper foil can be obtained, and its purity, tensile strength and elongation reach 99.91%, 218.9 MPa and 20.6%, respectively.
Key words:  waste printed circuit board    copper foil    acid leaching solution    stirring speed    pulsed electrodeposition
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TF811  
  X705  
基金资助: 沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(18LHPY008)
通讯作者:  *刘洪军,博士,兰州理工大学材料科学与工程学院教授、博士研究生导师。目前主要从事增材制造、复合材料、有色金属回收再利用等方面的研究。liuhongjun@lut.edu.cn   
作者简介:  孙艳,兰州理工大学材料科学与工程学院硕士研究生,在刘洪军教授的指导下进行研究,目前主要研究领域为电子废弃物回收。
引用本文:    
孙艳, 刘洪军, 李亚敏, 李伟盛. 搅拌速度对废电路板酸浸液中脉冲电沉积铜箔的影响[J]. 材料导报, 2025, 39(18): 24090116-7.
SUN Yan, LIU Hongjun, LI Yamin, LI Weisheng. Effect of Stirring Speed on Pulsed Electrodeposition of Copper Foil from Acid Leaching Solution of Waste Printed Circuit Board. Materials Reports, 2025, 39(18): 24090116-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090116  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24090116
1 Zou D, Chen R, Zhao K, et al. Mining, Metallurgy & Exploration, 2024, 41(4), 1739.
2 Hao J, Wang Y, Wu Y, et al. Resources, Conservation and Recycling, 2020, 157, 104787.
3 Ning C, Lin C S K, Hui D C, et al. Topics in Current Chemistry, 2017, 375, 43.
4 Abbadi A, Rácz Á, Bokányi L. Journal of Material Cycles and Waste Management, 2024, 26, 1326.
5 Liu K, Wang M, Tsang D C W, et al. Journal of Hazardous Materials, 2022, 440, 129638.
6 Haccuria E, Ning P, Cao H, et al. Journal of Cleaner Production, 2017, 152, 150.
7 Rajahalme J, Perämäki S, Budhathoki R, et al. Journal of Management, 2021, 73(4), 980.
8 Ventura E, Futuro A, Pinho S C, et al. Journal of Environmental Ma-nagement, 2018, 223, 297.
9 Jadhao P R, Mishra S, Singh A, et al. Journal of Environmental Ma-nagement, 2023, 335, 117581.
10 Li W S. Research on preparation of Cu and graphene/Cu composite materials by electrodeposition method from waste circuit boards. Master's Thesis, Lanzhou University of Technology, China, 2023 (in Chinese).
李伟盛. 用废旧电路板电沉积法制备Cu和石墨烯/Cu复合材料的研究. 硕士学位论文, 兰州理工大学, 2023.
11 Hao J, Wang X, Wang Y, et al. Journal of Material Cycles and Waste Management, 2023, 25(2), 1108.
12 Pena E D, Roy S. Surface & Coatings Technology, 2018, 339, 101.
13 Deng S H, Zhang D D, Zhou J X, et al. Rare Metals, 2016, 40(9), 914(in Chinese).
邓姝皓, 张朵朵, 周金湘, 等. 稀有金属, 2016, 40(9), 914.
14 Atapattu H Y R, De Silva D S M, Pathiratne K A S, et al. Journal of Materials Science:Material in Electronics, 2016, 27, 5415.
15 Hadipour A, Bharololoom M E. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 274.
16 Guimarães F Y, Santos D I, Dutra J A. Hydrometallurgy, 2014, 149, 63.
17 Xu T Y, Zhang C L, Wang R X, et al. Mining and Metallurgical Engineering, 2019, 39(2), 71(in Chinese).
徐添妍, 张承龙, 王瑞雪, 等. 矿冶工程, 2019, 39(2), 71.
18 Wang M Y, Wang Z, Guo Z C. Journal of Electroanalytical Chemistry, 2015, 744, 25.
19 Gu M, Huang L, Yang F Z, et al. Chinese Journal of Applied Chemistry, 2002(3), 280(in Chinese).
辜敏, 黄令, 杨防祖, 等. 应用化学, 2002(3), 280.
20 Gökhan O, Gökçe H. Powder Technology, 2010, 201(1), 57.
21 Bai X B, Wang W. Materials Protection, 2012, 45(11), 10(in Chinese).
白新波, 王为. 材料保护, 2012, 45(11), 10.
22 Wang M Y, Gong X Z, Wang Z. Journal of Cleaner Production, 2018, 204, 41.
23 Ma X L, Li Y Z, Yao E D, et al. Rare Metal Materials and Engineering, 2019, 48(9), 2905(in Chinese).
马秀玲, 李永贞, 姚恩东, 等. 稀有金属材料与工程, 2019, 48(9), 2905.
24 Ji R, Tang Z F, Zhou X L, et al. Vacuum, 2009, 46(4), 12(in Chinese).
吉锐, 唐振方, 周序乐, 等. 真空, 2009, 46(4), 12.
25 Zhang J L, Chen H B, Fan B F, et al. Journal of Alloys and Compounds, 2021, 884, 161044.
26 Zhao Z P, Hu H, Song K X, et al. Electroplating and Finishing, 2023, 42(21), 54(in Chinese).
赵志朋, 胡浩, 宋克兴, 等. 电镀与涂饰, 2023, 42(21), 54.
27 Zhou S Y, Liu S F, Zhao H, et al. Materials Characterization, 2022, 192, 112247.
28 Song J M, Wang D S, Yeh C H, et al. Materials Science and Enginee-ring A, 2013, 559, 655.
29 Kong X G, Ding H M, Zhang J Q, et al. Intermetallics, 2023, 163, 108066.
30 Zhu H, Hou J Q, Li Z J, et al. China Nonferrous Metals Monthly, 2021, 50(4), 29.
[1] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[2] 杨蕾, 朱茂兰, 翁威, 衷水平. 锂电池用电解铜箔性能调控研究进展[J]. 材料导报, 2024, 38(10): 22110058-9.
[3] 陈守东, 陈敬琪, 李杰, 孙建, 卢日环. 复合成形轧制铜极薄带变形局部化的晶体塑性有限元模拟[J]. 材料导报, 2023, 37(2): 21050240-10.
[4] 吴双全, 任鑫, 初鑫, 江仁康, 窦春岳, 高志玉. 基于双向脉冲电沉积下的Ni-纳米TiC复合镀层结构及耐磨性能[J]. 材料导报, 2020, 34(24): 24080-24085.
[5] 桑健, 王波, 朱训明, 张洪涛, 王云峰, 金伟, 高丙路, 常青, 何鹏. T2铜箔热辅助超声波增材制造工艺[J]. 材料导报, 2018, 32(18): 3199-3207.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed