Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24090103-8    https://doi.org/10.11896/cldb.24090103
  无机非金属及其复合材料 |
电石渣碱激发钢渣-矿渣胶凝材料的性能与水化机理
王国辰1, 胡长明1,2,*, 武智鹏3, 李靓1, 樊恒辉3, 何小文4
1 西安建筑科技大学土木工程学院,西安 710055
2 延安大学西安创新学院,西安 710100
3 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100
4 中铁二十局集团南方工程有限公司,广州 511300
Properties and Hydration Mechanism of Calcium Carbide Residue Alkali-activated Basic Oxygen Furnace Slag-Ground Granulated Blast Furnace Slag Binder
WANG Guochen1, HU Changming1,2,*, WU Zhipeng3, LI Liang1, FAN Henghui3, HE Xiaowen4
1 College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Xi'an Innovation College of Yan'an University, Xi'an 710100, China
3 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
4 China Railway 20th Bureau Group Southern Engineering Co., Ltd., Guangzhou 511300, China
下载:  全 文 ( PDF ) ( 42152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为积极推动中国“双碳”战略目标和工业固废的资源化利用,采用电石渣、转炉钢渣、高炉矿渣三种工业固废制备新型全固废胶凝材料。通过开展室内试验,系统研究了电石渣掺量与转炉钢渣/高炉矿渣质量比对胶凝材料工作与力学性能的影响,分析其物相组成、微观形貌、红外吸收性质和水化作用机理。结果表明:电石渣掺量一定时,随转炉钢渣/高炉矿渣质量比增加,浆体初凝时间延长,流动度和析水率增大,结石率减小;转炉钢渣/高炉矿渣质量比一定时,随电石渣掺量增加,浆体初凝时间缩短,流动度和析水率减小,结石率增大。该全固废胶凝体系中电石渣存在最优掺量,转炉钢渣与高炉矿渣之间存在最优质量比,当电石渣掺量为20%、转炉钢渣/高炉矿渣质量比为2∶8时,试件3 d、7 d和28 d抗压强度均达到最大值,分别为8.5 MPa、16 MPa和32.1 MPa。电石渣、转炉钢渣与高炉矿渣在浆液水化反应过程中可以起互补作用,电石渣中的Ca(OH)2快速水化产生Ca2+与OH-,提供反应所需的碱性环境,生成C-S-H凝胶,填充孔隙,从而使结构更密实,力学性能提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王国辰
胡长明
武智鹏
李靓
樊恒辉
何小文
关键词:  全固废胶凝材料  电石渣碱激发  水化协同  微观结构  物相组成    
Abstract: To actively promote China's dual carbon goals and the resource utilization of industrial solid waste, an all-solid-wastebinder was prepared using calcium carbide residue (CCR), basic oxygen furnace slag (BOFS), and ground granulated blast furnace slag (GGBS). Through laboratory experiments, the influence of CCR content and mass ratio of BOFS/GGBS on the workability and mechanical performance of the binder was systematically studied, and the phase composition, microscopic morphology, infrared absorption properties, and hydration mechanism were analyzed. The results indicate that when CCR amount is constant, with the increase of the mass ratio of BOFS/GGBS, the initial setting time of the paste increases, the flowability and bleeding rate increase, and the stone rate decreases. When the mass ratio of BOFS/GGBS is constant, with the increase of CCR amount, the initial setting time of the paste shortens, the flowability and bleeding rate decrease, and the stone rate increases. There is an optimal CCR content in the all-solid-waste cementitious system, and there is a synergistic effect between BOFS and GGBS during hydration. When CCR content is 20% and the mass ratio of BOFS/GGBS is 2∶8, the compressive strengths at 3 days, 7 days, and 28 days reach the maximum of 8.5 MPa, 16 MPa, and 32.1 MPa, respectively. CCR, BOFS, and GGBS can complement each other during hydration reaction;the rapid hydration of Ca(OH)2 in CCR provides Ca2+ and OH-, creating an alkaline environment for the formation of C-S-H gel, which fills pores, resulting in a denser structure and improved mechanical performance.
Key words:  all-solid-waste binder    calcium carbide residue alkali-activated    hydration synergy    microstructure    phase composition
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52178302);陕西省重点研发计划(2021SF-523;2022SF-375);陕西省自然科学基础研究计划(2022JQ-375)
通讯作者:  *胡长明,西安建筑科技大学土木工程学院教授、博士研究生导师。目前主要从事土木工程建造与管理等研究。hu.tm@163.com   
作者简介:  王国辰,西安建筑科技大学土木工程学院硕士研究生,在胡长明教授的指导下进行研究。目前主要从事固体废物资源化利用方向的研究。
引用本文:    
王国辰, 胡长明, 武智鹏, 李靓, 樊恒辉, 何小文. 电石渣碱激发钢渣-矿渣胶凝材料的性能与水化机理[J]. 材料导报, 2025, 39(18): 24090103-8.
WANG Guochen, HU Changming, WU Zhipeng, LI Liang, FAN Henghui, HE Xiaowen. Properties and Hydration Mechanism of Calcium Carbide Residue Alkali-activated Basic Oxygen Furnace Slag-Ground Granulated Blast Furnace Slag Binder. Materials Reports, 2025, 39(18): 24090103-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090103  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24090103
1 Yu C S, Zhang L L, Zheng D W, et al. Scientia Sinica (Technologica), 2022, 52(4), 529 (in Chinese).
余春松, 张玲玲, 郑大伟, 等. 中国科学:技术科学, 2022, 52(4), 529.
2 Bondar D, Nanukuttan S. Buildings, 2022, 12(2), 94.
3 Dai X, Aydin S, Yardimci M Y, et al. Cement and Concrete Composites, 2022, 133, 104715.
4 Liu S X, Su Y, Yang M, et al. Metal Mine, 2022, 11, 252 (in Chinese).
刘淑贤, 苏严, 杨敏, 等. 金属矿山, 2022, 11, 252.
5 Chai Y S, Zhang L K. Materials Reports, 2023, 37(S1), 269 (in Chinese).
柴石玉, 张凌凯. 材料导报, 2023, 37(S1), 269.
6 Amer I, Kohail M, El-Feky M S, et al. Ain Shams Engineering Journal, 2021, 12(2), 1475.
7 Dulaimi A, Shanbara H K, Al-Rifaie A. Construction and Building Materials, 2020, 250, 118808.
8 Gao Y L, Zhu Z H, Meng H, et al. Journal of Building Materials, 2023, 26(8), 870 (in Chinese).
高英力, 祝张煌, 孟浩, 等. 建筑材料学报, 2023, 26(8), 870.
9 Guo W, Zhang Z, Bai Y, et al. Construction and Building Materials, 2021, 291, 123367.
10 Zhang J, Tan H, He X, et al. Construction and Building Materials, 2020, 249, 118763.
11 Zhao L W, Zhu G Y, Li S P, et al. Clean Coal Technology, 2021, 27(3), 13 (in Chinese).
赵立文, 朱干宇, 李少鹏, 等. 洁净煤技术, 2021, 27(3), 13.
12 Wang J F, Chang L, Wang Y, et al. Materials Reports, 2023, 37(11), 119 (in Chinese).
王剑锋, 常磊, 王艳, 等. 材料导报, 2023, 37(11), 119.
13 GB/T 176-2017. Methods for chemical analysis of cement, Standards Press of China, China, 2017(in Chinese).
GB/T 176-2017. 水泥化学分析方法, 中国标准出版社, 2017.
14 Jiao D, Shi C, Yuan Q, et al. Cement and Concrete Composites, 2018, 89, 76.
15 Manikandan P, Natrayan L, Duraimurugan S, et al. Silicon, 2022, 14(13), 7799.
16 Cai R, Wu T, Fu C, et al. Construction and Building Materials, 2022, 320, 126304.
17 Xiao R, Jiang X, Zhang M, et al. Materials & Design, 2020, 194, 108975.
18 Yu H, Yi Y, Unluer C. Construction and Building Materials, 2021, 270, 121839.
19 Zhong X F, Wang A G, Yu L L, et al. Materials Reports, DOI:10.11896/cldb.23070036 (in Chinese).
仲小凡, 王爱国, 于乐乐, 等. 材料导报, DOI:10.11896/cldb.23070036.
20 Guo W, Zhang Z, Zhao Q, et al. Construction and Building Materials, 2021, 269, 121301.
21 General Administration of Quality Supervision, Inspection and Quarantine of the People, s Republic of China. Common Portland cement:GB 175-2007, Standards Press of China, China, 2008 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥:GB 175-2007, 中国标准出版社, 2008.
22 Kumar S, Kumar R, Mehrotra S P. Journal of Materials Science, 2010, 45(3), 607.
23 Feng Y, Li F, Qi W, et al. Minerals, 2022, 12(12), 1549.
24 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Technical code for application of cementitious grout:GB/T 50448-2015, China Architecture & Building Press, China, 2015 (in Chinese).
中华人民共和国住房和城乡建设部. 水泥基灌浆材料应用技术规范:GB/T 50448-2015, 中国建筑工业出版社, 2015.
25 Ministry of Industry and Information Technology of the People's Republic of China. Cement sodium silicate grout:JC/T 2536-2019, China Construction Material Industry Publishing House, China, 2019 (in Chinese).
中华人民共和国工业和信息化部. 水泥-水玻璃灌浆材料:JC/T 2536-2019, 中国建材工业出版社, 2019.
26 Gao X, Yao X, Yang T, et al. Construction and Building Materials, 2021, 308, 125015.
27 Wang Q. Study on the effect of magnesium ions on C-S-H, AFt and AFm and the properties of M-S-H. Master's Thesis, Xi'an University of Architecture and Technology, China, 2020 (in Chinese).
王倩. 镁离子对C-S-H、AFt和AFm的作用及产物M-S-H的性能研究. 硕士学位论文, 西安建筑科技大学, 2020.
28 Maia-Neto F, Snellings R, Skibsted J. Cement and Concrete Research, 2024, 177, 107428.
29 Chen Y, de Lima L M, Li Z, et al. Cement and Concrete Research, 2024, 180, 107484.
30 Puertas F, Palacios M, Manzano H, et al. Journal of the European Ceramic Society, 2011, 31(12), 2043.
31 Kapeluszna E, Kotwica Ł, Różycka A, et al. Construction and Building Materials, 2017, 155, 643.
32 Li W, Yi Y. Construction and Building Materials, 2020, 238, 117713.
33 Joseph B, Mathew G. Scientia Iranica, 2012, 19(5), 1188.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[6] 张萌, 窦智, 王泽平, 温勇. 碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性[J]. 材料导报, 2025, 39(18): 24040241-11.
[7] 李祥文, 李昆锋, 武晨浩, 费志方, 张震, 孙文彩, 杨自春. 不同碱性催化剂对疏水SiO2气凝胶性能的影响[J]. 材料导报, 2025, 39(17): 24080159-5.
[8] 荣辉, 王亚楠, 刘志华, 王海良, 黄阔薪. 海洋环境下硅藻生物的繁殖特性及在水泥基材料表面的附着状态[J]. 材料导报, 2025, 39(17): 24060213-7.
[9] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[10] 刘煌海, 季韬, 刘信所, 胡志龙, 郑巧芳, 郑小燕. 纳米硅溶胶增强碳酸钠激发矿渣砂浆力学性能及机理研究[J]. 材料导报, 2025, 39(16): 24060009-8.
[11] 历健, 郝宏, 周志勇, 汪科良, 郑玉刚, 赵蒙, 周晖, 张凯锋. 乙炔流量对四面体含氢非晶碳薄膜结构、机械特性和大气摩擦学性能的影响[J]. 材料导报, 2025, 39(15): 25030081-8.
[12] 尹雪亮, 王慧芳, 杨茜, 徐磊, 马北越. ZrO2添加对六铝酸钙陶瓷微观结构及力学性能的影响[J]. 材料导报, 2025, 39(15): 24110086-5.
[13] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[14] 张永成, 曹锋, 郑明杰, 李双营, 欧阳浩. 青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构[J]. 材料导报, 2025, 39(13): 24050241-8.
[15] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed