Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24060213-7    https://doi.org/10.11896/cldb.24060213
  无机非金属及其复合材料 |
海洋环境下硅藻生物的繁殖特性及在水泥基材料表面的附着状态
荣辉1,2, 王亚楠1, 刘志华1, 王海良3,*, 黄阔薪4
1 天津城建大学材料科学与工程学院,天津 300384
2 天津市建筑绿色功能材料重点实验室,天津 300384
3 天津城建大学土木工程学院,天津 300384
4 中国铁建大桥工程局集团有限公司,天津 300300
Propagation Characteristics of Diatom and Its Adhesion Evolution on Concrete Surface in Marine Environment
RONG Hui1,2, WANG Yanan1, LIU Zhihua1, WANG Hailiang3,*, HUANG Kuoxin 4
1 School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China
2 Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China
3 School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, China
4 China Railway Bridge Engineering Bureau Group Co., Ltd., Tianjin 300300, China
下载:  全 文 ( PDF ) ( 37747KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海洋环境中的生物对砂浆产生严重的腐蚀,硅藻是海洋中的重要生物,其在生态系统中扮演着初级生产者的角色,且在海洋环境中占据相当大的比例。本工作研究海洋中硅藻的生长特性,硅藻在砂浆表面的附着演变及其在砂浆表面附着状态。首先研究硅藻的生长繁殖特性,然后通过测定培养介质中的pH值、盐度、总溶解固体物质和溶解氧,结合显微观察、X射线衍射和氯离子渗透性测试等技术,探究硅藻在不同生长阶段对砂浆性能的影响。结果表明,硅藻的生命周期在第7 d达到生长高峰,随后逐渐下降。硅藻生命活动会造成培养介质的溶解氧值明显波动、pH值先增加后下降、总溶解固体物质和盐度持续上升,从而加剧砂浆的腐蚀。随着试验龄期的延长,腐蚀现象愈发严重,砂浆抗压强度降低8%,氯离子的迁移率可增大83%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
荣辉
王亚楠
刘志华
王海良
黄阔薪
关键词:  硅藻  砂浆  微观结构  力学性能  生物腐蚀    
Abstract: Concrete is seriously corroded by organisms in the marine environment, among which diatom is an important organism in the ocean, which plays the role of primary producer in the ecosystem, and occupies a considerable proportion in the Marine environment. In thiswork, the growth characteristics of diatom and its adhesion evolution on concrete surface were studied. Firstly, the growth and propagation characteristics of diatom were studied, and then the influence of diatom on the performance of concrete at different growth stages was explored by measuring pH value, salinity, total dissolved solid matter and dissolved oxygen in the culture medium, combined with microscopic observation, X-ray diffraction and chloride ion permeability test. The results show that the growth of diatom reaches its peak on the 7th day and then declines gradually. Its life activities will cause the dissolved oxygen value of the culture medium to fluctuate obviously, the pH value increases first and then decreases, the total dissolved solid matter and salinity continue to rise, aggravating the corrosion of concrete. With the extension of test age, the corrosion becomes more and more serious, in which the compressive strength of concrete decreases by 8%, and the mobility of chloride ions increases by 83.3%.
Key words:  diatom    mortar    microstructure    mechanical property    biological corrosion
发布日期:  2025-08-28
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52278269;52278268;52178264);天津市杰出青年科学基金项目(22JCJQJC00020);天津市自然科学基金重点项目(23JCZDJC00430)
通讯作者:  *王海良,天津城建大学二级教授,全国五一劳动奖章获得者。主要从事桥梁、生物建材和固废建材相关研究工作。whl@tcu.edu.cn   
作者简介:  荣辉,天津城建大学教授,天津市杰出青年基金项目获得者。主要从事生物建材(生物腐蚀、生物修复、生物发泡)和固废建材相关研究工作。
引用本文:    
荣辉, 王亚楠, 刘志华, 王海良, 黄阔薪. 海洋环境下硅藻生物的繁殖特性及在水泥基材料表面的附着状态[J]. 材料导报, 2025, 39(17): 24060213-7.
RONG Hui, WANG Yanan, LIU Zhihua, WANG Hailiang, HUANG Kuoxin. Propagation Characteristics of Diatom and Its Adhesion Evolution on Concrete Surface in Marine Environment. Materials Reports, 2025, 39(17): 24060213-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060213  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24060213
1 Guo F, Al-Saadi S, Singh Raman R K, et al. Corrosion Science, 2018, 141, 1.
2 Zhao Q, Zhang D X, Zhao X L, et al. Composites Science and Technology, 2021, 215, 108961.
3 Paul G Falkowski, Miriam E Katz, Andrew H Knoll. Science, 2004, 305, 1301.
4 Dugdale T M, Willis A, Wetherbee R. Biophysical Journal, 2006, 90(8), 58.
5 Hughes P, Fairhurst D, Sherrington I, et al. International Biodeterioration & Biodegradation, 2013, 79(2), 14.
6 Hughes P, Fairhurst D, Sherrington I, et al. International Biodeterioration & Biodegradation, 2014, 86, 2.
7 Mehta K, Paul J M. Microstructure, properties and materials of concrete, China Electric Power Press, China, 2008, pp. 45(in Chinese).
库马. 梅塔, 保罗J. M. 混凝土微观结构, 性能和材料, 中国电力出版社, 2008, pp. 45.
8 Wen B L. Study on corrosion and durability of concrete in urban sewage environment. Master's Thesis, Tianjin University, China, 2005(in Chinese).
闻宝联. 城市污水环境下混凝土腐蚀及耐久性研究. 硕士学位论文, 天津大学, 2005.
9 Gaylarde C, Ribas Silva M, Warscheid T. Materials and Structures, 2003, 36(5), 342.
10 Noeiaghaei T, Mukherjee A, Dhami N, et al. Construction & building materials, 2017, 149, 575.
11 Nowicka-Krawczyk P, elazna-Wieczorek J, Koziróg A, et al. Biofouling, 2019, 35(3), 284.
12 Gao Q Q, Cao B, Yang B, et al. Ocean Bulletin, 2017, 36(2), 217(in Chinese).
高清清, 曹兵, 杨波, 等. 海洋通报, 2017, 36(2), 217.
13 Vazquez-Nion D, Silva B, Prieto B. Science of the Total Environment, 2018, 610, 44.
14 Mascaro Maria Emanuela, Pellegrino Giuseppe, Palermo Anna Maria. Sustainability, 2021, 14(1), 1.
15 Duan J Z, Liu C, Liu H L, et al. Marine Sciences, 2019, 44(8), 162(in Chinese).
段继周, 刘超, 刘会莲, 等. 海洋科学, 2020, 44(8), 162.
16 Cavalheiro M, Teixeira M C. Front Med (Lausanne), 2018, 5, 28.
17 Rong H, Yu C L, Zhang S Q, et al. Journal of the Chinese Ceramic Society, 2012, 49(8), 1650(in Chinese).
荣辉, 於成龙, 张树青, 等. 硅酸盐学报, 2021, 49(8), 1650.
18 Gao L X, Ding R X, Yao Y, et al. Materials Reports, 2018, 32(3), 503(in Chinese).
高礼雄, 丁汝茜, 姚燕, 等. 材料导报, 2018, 32(3), 503.
19 Gaylarde C C, Morton L H G. Biofouling (Chur, Switzerland), 1999, 14(1), 59.
20 Jenkins S R, Norton T A, Hawkins S J. Journal of Experimental Marine Biology and Ecology, 1999, 236(1), 49.
21 Du Y F, Xu K D, Lei Y L. Journal of Marine Sciences, 2008(1), 163(in Chinese).
杜永芬, 徐奎栋, 类彦立. 海洋科学集刊, 2008(1), 163.
22 Shi H, Wang L M. Guangdong Agricultural Sciences, 2006(6), 72(in Chinese).
史航, 王鲁民. 广东农业科学, 2006(6), 72.
23 Beata G, Sukriye C A, Vincent B, et al. Frontiers in Microbiology, 2015, 6, 979.
24 Le J X, Yan Y N, Li X Y, et al. Jiangsu Building Materials, 2006(3), 14(in Chinese).
乐建新, 闫亚楠, 李小燕, 等. 江苏建材, 2006(3), 14.
25 Quadri S A, Quadri S A, Sidek O, et al. Neural computing & applications, 2014, 24(7), 1815.
26 Jenneman G E, McInerney M J, Knapp R M. Applied and Environmental Microbiology, 1985, 50(2), 383.
27 Vázquez-Nion D, Silva B, Prieto B. Science of the Total Environment, 2018, 610, 44.
28 Korkanç M, Savran A. Construction and Building Materials, 2015, 80, 279.
29 Onyema I C, Onwuka M E, Olutimehin A O, et al. Life Science Journal, 2010, 7(4), 40.
30 Duan J Z, Ma S D, Huang Y L. Corrosion Science and Protection Technology, 2001(1), 37(in Chinese).
段继周, 马士德, 黄彦良. 腐蚀科学与防护技术, 2001(1), 37.
31 Cohn S A, Farrell J F, Munro J D, et al. Diatom research, 2003, 18(2), 225.
32 Wu G F, Feng Z J, et al. Botany (2nd Ed.) Vol. 2, Higher Education Press, China, 1992, pp. 33(in Chinese).
吴国芳, 冯志坚, 等. 植物学(第二版)下册, 高等教育出版社, 1992, pp. 33.
33 Wang D, Guan F, Feng C, Mathivanan K, et al. Microorganisms, 2023, 11, 2076.
34 Association P C. Concrete Information, 2002, 12, 6.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed