Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24060009-8    https://doi.org/10.11896/cldb.24060009
  无机非金属及其复合材料 |
纳米硅溶胶增强碳酸钠激发矿渣砂浆力学性能及机理研究
刘煌海1, 季韬2, 刘信所3, 胡志龙1, 郑巧芳1, 郑小燕1,*
1 福建农林大学交通与土木工程学院,福州 350108
2 福州大学土木工程学院,福州 350108
3 浙江交工集团股份有限公司,杭州 310052
Mechanical Performance and Mechanism of Nano-silica Sol Reinforced Sodium Carbonate Activated Slag Mortar
LIU Huanghai1, JI Tao2, LIU Xinsuo3, HU Zhilong1, ZHENG Qiaofang1, ZHENG Xiaoyan1,*
1 College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
2 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
3 Zhejiang Commun Construct Grp Co., Ltd., Hangzhou 310052, China
下载:  全 文 ( PDF ) ( 49512KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳酸钠激发矿渣砂浆(SCASM)具有碳排放低、后期强度高和耐久性好等优点,然而凝结时间长和早期强度低限制了其发展应用。纳米硅溶胶(NSS)是纳米SiO2颗粒在水中稳定扩散形成的胶体溶液,具有高活性和分散性。本工作研究了不同NSS掺量对SCASM工作性能和力学性能的影响规律,通过水化热、傅里叶红外光谱(FTIR)和电镜扫描-能谱分析(SEM-EDS)解释其作用机理。结果表明:NSS可以有效提高SCASM的凝结速度和力学性能。NSS具有成核效应和纳米填充效应,可以提高SCASM的水化速率,提高聚合程度,改善微观形貌并致密基体结构。在碱性作用下,NSS中纳米SiO2颗粒的Si-O键进一步打开,在早期即可形成单体[SiO4]4-,提供更多的成核位点,优先于CO32-与矿渣中的Ca2+、Al3+等反应生成C-(A)-S-H凝胶,对早期强度起到重要作用;其形成的凝胶体Al/Si比减小,结构更致密,同时未反应的SiO2颗粒可填充孔隙,进一步优化孔结构。随着NSS掺量增加,SCASM的凝结时间、泌水率和流动度逐渐降低,力学性能和折压比先提升后降低。在11%掺量下,浆体初凝和终凝时间分别可缩短96.0%和93.1%。在5%掺量下,抗折强度最优,7、28 d抗折强度分别显著提升75.4%和24.7%。在8%掺量下,抗压强度最优,7、28 d抗压强度分别显著提升91.7%和21.6%。当NSS掺量较大时会降低自身分散性,从而影响力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘煌海
季韬
刘信所
胡志龙
郑巧芳
郑小燕
关键词:  纳米硅溶胶  碳酸钠  碱矿渣砂浆  工作性能  力学性能  微观结构    
Abstract: Sodium carbonate activated slag mortar (SCASM) has the advantages of low carbon emissions, high long-term strength and excellent durability, but its disadvantages such as long setting time and low early strength limit its practical application. Nano-silica sol (NSS) is a colloidal solution formed by the stable dispersion of nano-SiO2 particles in water, exhibiting high activity and dispersibility. In this work, the effect of various NSS contents on the workability and mechanical performance of SCASM was investigated, and its mechanism was explored by hydration heat, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope and energy dispersive spectrometer analysis (SEM-EDS). The results show that NSS can effectively improve the setting speed and mechanical properties of SCASM. NSS provides nucleation effect and nano-filling effect to effectively accelerate the hydration rate, increase the polymerization degree of SCASM, and densify the matrix microstructure. Under alkaline action, the Si-O bond of nano-SiO2 particles in NSS is further opened to form monomer [SiO4]4- in the early stage, providing more nucleation sites. This is prior to the reaction of CO32- with Ca2+ and Al3+ in the slag to form C-(A)-S-H gel, which plays an important role in the early strength. The gel formed has lower Al/Si ratio and denser structure. At the same time, the unreacted SiO2 particles could fill the pores and further optimize the pore structure. With the increasing of NSS content, the setting time, bleeding rate and fluidity of SCASM gradually decrease, while the mechanical properties and the ratio of flexural to compression firstly increase and then decrease. When the NSS content is 11%, the initial setting time and final setting time of the pastes can be shortened by 96.0% and 93.1%, respectively. When the NSS content is 5%, the mortar sample has the highest flexural strength, compared with mortar sample without NSS, its 7 d and 28 d flexural strength significantly increases by 75.4% and 24.7%, respectively. When the NSS content is 8%, the mortar sample has the highest compressive strength, and its 7 d and 28 d compressive strength significantly improve by 91.7% and 21.6%, respectively. However, when the NSS content is too high, the mechanical properties of SCASM will reduce due to the decreased dispersibility of NSS.
Key words:  nano-silica sol    sodium carbonate    alkali-activated slag mortar    working performance    mechanical performance    microstructure
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU528  
基金资助: 福建省自然科学基金(2022J01158);福建省交通运输科技项目(202302)
通讯作者:  郑小燕,博士,福建农林大学土木工程系副教授、硕士研究生导师。主要从事绿色道路工程材料、低碳碱激发胶凝材料、固体废弃物资源化利用等方面的研究。xiaoyanzheng@fafu.edu.cn   
作者简介:  刘煌海,福建农林大学交通与土木工程学院硕士研究生,在郑小燕副教授的指导下进行研究。主要研究方向为绿色低碳水泥基材料。
引用本文:    
刘煌海, 季韬, 刘信所, 胡志龙, 郑巧芳, 郑小燕. 纳米硅溶胶增强碳酸钠激发矿渣砂浆力学性能及机理研究[J]. 材料导报, 2025, 39(16): 24060009-8.
LIU Huanghai, JI Tao, LIU Xinsuo, HU Zhilong, ZHENG Qiaofang, ZHENG Xiaoyan. Mechanical Performance and Mechanism of Nano-silica Sol Reinforced Sodium Carbonate Activated Slag Mortar. Materials Reports, 2025, 39(16): 24060009-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060009  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24060009
1 Shen J Y, Xiao J Z, Wen G X, et al. Journal of Cleaner Production, 2024, 434, 140201.
2 Zheng X Y, Liu H H, You S J, et al. Cement and Concrete Composites, 2022, 131, 104556.
3 He J, Zheng W H, Bai W B, et al. Construction and Building Materials, 2021, 271, 121608.
4 Yang K, Zhang Z L, Yang Y, et al. Materials Reports, 2019, 33(14), 2326 (in Chinese).
杨凯, 张之璐, 杨永, 等. 材料导报, 2019, 33(14), 2326.
5 Adesina A. Resources, Environment and Sustainability, 2021, 3, 100016.
6 Ling X, Schollbach K, Liu G, et al. Construction and Building Materials, 2021, 313, 125494.
7 Kucharczyk S, Pichór W. Materials and Structures, 2023, 56(3), 58.
8 Jiao Z Z, Wang Y, Zheng W Z, et al. Construction and Building Materials, 2019, 197, 83.
9 Kiiashko A, Chaouche M, Frouin L. Cement and Concrete Composites, 2021, 119, 103986.
10 You S J. Tensile creep behavior and crack resistance of alkali-activated slag concrete with recycled concrete aggregate. Master's Thesis, Fujian Agriculture and Forestry University, China, 2023 (in Chinese).
游生洁. 碱矿渣再生混凝土拉伸徐变及抗裂性能研究. 硕士学位论文, 福建农林大学, 2023.
11 Wang J X, Lyu X J, Wang L Y, et al. Journal of Cleaner Production, 2018, 171, 622.
12 Xu P, Zhang X H, Ming G L, et al. Materials Reports, 2023, 37(16), 119 (in Chinese).
徐鹏, 张轩翰, 明高林, 等. 材料导报, 2023, 37(16), 119.
13 Matalkah F, Ababneh A, Aqel R. Construction and Building Materials, 2022, 336, 127545.
14 Zhang C W, Khorshidi H, Najafi E, et al. Journal of Cleaner Production, 2023, 384, 135390.
15 Wang W J, Wang B M, Zhang S P. Renewable and Sustainable Energy Reviews, 2024, 192, 114215.
16 Miao J X, Lu L Q, Jiang J Y. Journal of Materials Research and Technology, 2022, 19, 3646.
17 Yin X, Dai Y. Chemical Propellants & Polymeric Materials, 2005, 3(6), 27 (in Chinese).
殷馨, 戴媛静. 化学推进剂与高分子材料, 2005, 3(6), 27.
18 Xie Z Y, Zhou H, Li Q C, et al. Materials Reports, 2020, 34(S2), 1160 (in Chinese).
解志益, 周涵, 李庆超, 等. 材料导报, 2020, 34(S2), 1160.
19 Xu P, Chen T Y, Fan K J, et al. Journal of Building Engineering, 2023, 80, 108090.
20 Kong D Y, Pan H W, Wang L H, et al. Cement and Concrete Compo-sites, 2019, 98, 137.
21 Zhang X Y, Song X F, Gao R, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(3), 589 (in Chinese).
张县云, 宋学锋, 高瑞. 硅酸盐通报, 2014, 33(3), 589.
22 Chen J J, Ng P L, Xu L, et al. Construction and Building Materials, 2024, 411, 134582.
23 Zhang X Z, Yang H B, Yang Q, et al. Advances in Mechanical Engineering, 2019, 11(2), 1.
24 Long W J, Xiao B X, Gu Y C, et al. Materials Characterization, 2018, 136, 111.
25 Kim T, Kim J H, Jun Y. Materials, 2019, 12(9), 1571.
26 Reddy K C, Subramaniam K V L. Cement and Concrete Composites, 2021, 123, 104175.
27 Gao X, Yu Q L, Brouwers H J H. Construction and Building Materials, 2015, 98, 397.
28 Xu Z H, Gao J M, Zhao Y S, et al. Journal of Cleaner Production, 2022, 332, 130096.
29 Xie L L, Liu K W. Materials, 2022, 15(5), 1687.
30 zen  C, Oktay D, Aktürk B. Construction and Building Materials, 2024, 422, 135844.
31 Song W L, Zhu Z D, Pu S Y, et al. Materials Reports, 2020, 34(22), 22070 (in Chinese).
宋维龙, 朱志铎, 浦少云, 等. 材料导报, 2020, 34(22), 22070.
32 Chen X Y, Cheng Z Y, Zhan X, et al. Materials Reports, 2021, 35(23), 23235 (in Chinese).
陈旭勇, 程子扬, 詹旭, 等. 材料导报, 2021, 35(23), 23235.
33 Zhang S L, Qi X Q, Guo S Y, et al. Construction and Building Materials, 2021, 275, 122154.
34 Bernal S A, Provis J L, Myers R J, et al. Materials and Structures, 2015, 48(3), 517.
35 Zhang B B, Chen Y N, Ma Y, et al. Magazine of Concrete Research, 2022, 75(9), 447.
36 Niu F S, Nie Y M, Zhang J R. Concrete, 2009(11), 83(in Chinese).
牛福生, 聂轶苗, 张锦瑞. 混凝土, 2009(11), 83.
37 Ye J Y, Zhang W S. Journal of the Chinese Ceramic Society, 2020, 48(8), 1263(in Chinese).
叶家元, 张文生. 硅酸盐学报, 2020, 48(8), 1263.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed