Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24060021-12    https://doi.org/10.11896/cldb.24060021
  无机非金属及其复合材料 |
3D打印建筑底层荷载的研究进展
张大旺, 杨欢, 李辉*
西安建筑科技大学材料科学与工程学院粉体工程研究所,西安 710055
Research Progress of 3D Printing Building Bottom Loading
ZHANG Dawang, YANG Huan, LI Hui*
Powder Engineering Institute, School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 13375KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 3D打印混凝土技术作为建筑施工的一项新工艺,具有无模板,建造效率高的特点,与传统混凝土不同,由于逐层堆积的建造方式,底层混凝土已成为3D打印建筑的主要受力部位,因此提高底层结构的承载力也成为了提高3D打印建筑可建造性和结构稳定性的重点研究方向之一。本文对比了传统的施工工艺与3D打印混凝土技术的不同;概括了底层混凝土因上层混凝土重力而产生的正应力、剪切应力以及描述两者关系的受力模型;并分析了底层混凝土因受力的非均质化而产生的变形,所导致的打印结构失效;并提出了三种优化底层荷载的方法:调整混凝土的凝结时间进行打印、提高混凝土的静态屈服应力和选择合理的打印工艺参数。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张大旺
杨欢
李辉
关键词:  3D打印混凝土技术  底层荷载  受力模型  变形  结构失效    
Abstract: 3D printing concrete technology, as a new process of building construction, has the characteristics of no formwork and high construction efficiency. Different from conventional concrete, the bottom concrete has become the main stress part of 3D printing buildings due to the construction method of stacking layer by layer. Therefore, improving the bearing capacity of the underlying structure has become one of the key technology to improve the constructability and structural stability of 3D printed buildings. In this paper, differences between the conventional construction process and 3D printing concrete technology were compared. The compressive stress and shear stress of the bottom concrete caused by the gravity of the upper concrete layer were summarized, as well as the force model describing the relationship between the two stresses was introduced. The deformation of the bottom concrete due to the heterogeneity of the force, and resulting failure of the printed structure were analyzed. Finally, three methods to optimize the bottom load were put forward:adjusting the setting time of concrete for printing, improving the static yield stress of concrete and selecting reasonable printing process parameters.
Key words:  3D printing concrete technology    bottom load    force model    deformation    structural failure
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TU528  
通讯作者:  李辉,现为西安建筑科技大学教授、博士研究生导师,材料科学与工程学院院长。目前主要研究领域为材料科学与工程(工程方向)、固体废弃物资源化利用、生态材料低碳制备。lihui@xauat.edu.cn   
作者简介:  张大旺,现为西安建筑科技大学副教授、硕士研究生导师。目前主要从事固体废弃物资源化利用、高性能、功能化研究和3D打印建筑材料的研究。
引用本文:    
张大旺, 杨欢, 李辉. 3D打印建筑底层荷载的研究进展[J]. 材料导报, 2025, 39(16): 24060021-12.
ZHANG Dawang, YANG Huan, LI Hui. Research Progress of 3D Printing Building Bottom Loading. Materials Reports, 2025, 39(16): 24060021-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060021  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24060021
1 Chang X D, Li W H, Wang Q, et al. Silicate Bulletin, 2019, 38(8), 2435(in Chinese).
常西栋, 李维红, 王乾, 等. 硅酸盐通报, 2019, 38(8), 2435.
2 Lim S, Buswel R A, Le T T, et al. Automation in Construction, 2012, 21, 262.
3 Zhang D W, Wang D M. Silicate Bulletin, 2015, 34(6), 1583(in Chinese).
张大旺, 王栋民. 硅酸盐通报, 2015, 34(6), 1583.
4 Wang D M, Zhang D W, Liu Z, et al. Concrete, 2019(4), 1(in Chinese).
王栋民, 张大旺, 刘泽, 等. 混凝土, 2019(4), 1.
5 Liu Z Y. Rheological property control and mechanical properties characterization of 3D printed cement-based materials. Master's Thesis, China Building Materials Science Research Institute, China, 2019(in Chinese).
刘致远. 3D打印水泥基材料流变性能调控及力学性能表征. 硕士学位论文, 中国建筑材料科学研究总院, 2019.
6 Qi G, Li Q Y, Cui X P, et al. Concrete, 2021(1), 36(in Chinese).
齐甦, 李庆远, 崔小鹏, 等. 混凝土, 2021(1), 36.
7 Shen L, Cui W J, Yu Q, et al. Construction Technology, 2023, 45(1), 213(in Chinese).
沈亮, 崔维久, 于琦, 等. 建筑施工, 2023, 45(1), 213.
8 Zhao Y, Wang H, Liu W S, et al. China Building Materials Technology, 2021, 30(3), 55(in Chinese).
赵颖, 王欢, 刘维胜, 等. 中国建材科技, 2021, 30(3), 55.
9 Lei B, Ma Y, Xiong Y C, et al. Concrete, 2018(11), 47(in Chinese).
雷斌, 马勇, 熊悦辰, 等. 混凝土, 2018(11), 47.
10 Xia Y X. Preparation and properties of 3D printed alkali-stimulated gelling materials. Master's Thesis, Chongqing University, China, 2021(in Chinese).
夏雨欣. 3D打印碱激发胶凝材料的制备及性能研究. 硕士学位论文, 重庆大学, 2021.
11 Kruger J, Zerank S, Van Z G. Construction Building Materials, 2020, 254, 119241.
12 Lei B, Ma Y, Xiong Y C, et al. Silicate Bulletin, 2017, 36(10), 3278(in Chinese).
雷斌, 马勇, 熊悦辰, 等. 硅酸盐通报, 2017, 36(10), 3278.
13 Kruger J, Zerank S, Van Z G. Automation in Construction, 2019, 106, 102904.
14 Willamson R V. Industrial Engineering Chemistry, 1929, 21(11), 1108.
15 Feys D, Verhoeven R, Schutter G. Cement Concrete Research, 2008, 38(7), 920.
16 De L F, Ferraris C, Sedran T. Materials Structures, 1998, 31(7), 494.
17 Zhang C. Design and basic properties of 3D printed concrete based on rheology. Ph. D. Thesis, Southeast University, China, 2024(in Chinese).
张超. 基于流变学的3D打印混凝土设计及其基本性能研究. 博士学位论文, 东南大学, 2024.
18 Roussel N. Cement Concrete Research, 2018, 112, 76.
19 Qian Y, Kawasgima S. Cement Concrete Research, 2016, 90, 73.
20 Wang Y L, Wang C F, Zhang F Y. Silicate Bulletin, 2021, 40(6), 1844(in Chinese).
王瑜玲, 王春福, 张飞燕. 硅酸盐通报, 2021, 40(6), 1844.
21 Ley-hernandez A M, Feys D, Kumar A. Cement and Concrete Research, 2020, 137, 106189.
22 Roussel N, Ovarlez G, Garrault S, et al. Cement Concrete Research, 2012, 42(1), 148.
23 Marchon D, Kawashim S, Bessaies-bey H, et al. Cement and Concrete Research, 2018, 112, 96.
24 Najvani M A D, Murcia D H, Soliman E, et al. Construction Building Materials, 2023, 394, 132119.
25 Wangler T, Lloret E, Reiter L, et al. Rilem technical letters, 2017, 1(1), 67.
26 Roussel N. Cement and Concrete Research, 2006, 36(10), 1797.
27 Wan S M. Research on construction performance and basic mechanical properties of 3D printed concrete. Master's Thesis, Xi’an University of Architecture and Technology, China, 2023(in Chinese).
万胜木. 3D打印混凝土建造性能及其基本力学性能研究. 硕士学位论文, 西安建筑科技大学, 2023.
28 Yuan Q, Li Z, Zhou D, et al. Construction Building Materials, 2019, 227, 116600.
29 Wang Q, Ren X, Li J. Automation in Construction, 2023, 155, 105037.
30 Perrrot A, Rangeard D, Pierre A. Cement and Concrete Composites, 2016, 49, 121.
31 Zhang X Y. Experimental test and numerical analysis of constructability of 3D printed concrete. Master's Thesis, Hebei University of Technology, China, 2022(in Chinese).
张心颖. 3D打印混凝土可建造性实验测试与数值分析. 硕士学位论文, 河北工业大学, 2022.
32 Cheng X R. Study on preparation and crack resistance of 3D printed fiber concrete. Master's Thesis, Hebei University of Technology, China, 2023(in Chinese).
程新睿. 3D打印纤维混凝土制备及抗裂性能研究. 硕士学位论文, 河北工业大学, 2023.
33 Nguyen-van V, Panda B, Zhang G, et al. Automation in Construction, 2021, 123, 103529.
34 An D, Zhang Y, Yang R C. Engineering Structures, 2024, 299, 117104.
35 Weng Y, Li M, Tan M J, et al. Construction and Building Materials, 2018, 163, 600.
36 Perrot A, Pierre A, Nerella V, et al. Cement Concrete Composites, 2021, 122, 104164.
37 Wolfs R, Bos F P, Salet T. Cement Concrete Research, 2018, 106, 103.
38 Wolfs R, Bos F P, Salet T. Cement Concrete Composites, 2019, 104, 103344.
39 Jayathilakage R, Rajeev P, Sanjayan J. Construction Building Materials, 2020, 240, 117989.
40 Saloustros S, Pelà L, Cervera M. Engineering Fracture Mechanics, 2015, 150, 96.
41 Liu Z, Li M, Quah T K N, et al. Additive Manufacturing, 2023, 76, 103787.
42 Liu H, Ding T, Xiao J, et al. Additive Manufacturing, 2022, 55, 102821.
43 Lubliner J, Oliver J, Oller S, et al. International Journal of Solids and Structures, 1989, 25(3), 299.
44 Chang Z, Liang M, Xu Y, et al. Cement Concrete Composites, 2022, 133, 104719.
45 Zhang H P. Preparation and properties of cement-based active powder concrete for 3D printing. Ph. D. Thesis, North University of China, China, 2020(in Chinese).
张洪萍. 3D打印用水泥基活性粉末混凝土制备及性能研究. 博士学位论文, 中北大学, 2020.
46 Panda B, Lim J H, Tan M J. Cement and Concrete Composites, 2019, 165, 563.
47 Suiker A S J. International Journal of Mechanical Sciences, 2018, 137, 145.
48 Suiker A S, Wolfs R J, Lucas S M, et al. Cement Concrete Research, 2020, 135, 106016.
49 Jiao Z K, Wang D M, Wang Q B, et al. Silicate Bulletin, 2021, 40(6), 1821(in Chinese).
焦泽坤, 王栋民, 王启宝, 等. 硅酸盐通报, 2021, 40(6), 1821.
50 Reiter L, Wangler T, Roussel N, et al. Cement Concrete Research, 2018, 112, 86.
51 Tang J Y, Xi Y B, Gao D Y, et al. Concrete and Cement Products, 2022(12), 18(in Chinese).
汤寄予, 席义斌, 高丹盈, 等. 混凝土与水泥制品, 2022(12), 18.
52 Lin X Q, Zhang T, Huo L, et al. Concrete, 2016(6), 141(in Chinese).
蔺喜强, 张涛, 霍亮, 等. 混凝土, 2016(6), 141.
53 Chen L, Wang D M, Lin X Q, et al. In:2011 Concrete and Cement Products Symposium. Wuxi, China, 2011(in Chinese).
陈雷, 王栋民, 蔺喜强, 等. 2011年混凝土与水泥制品学术讨论会, 中国, 无锡, 2011.
54 Dorn T, Hirsch T, Stephan D. Journal of the American Ceramic Society, 2023, 106(1), 752.
55 Tan J. Study on printability and early strength of 3D printed concrete doped with magnesium phosphate cement, Master's Thesis, China Three Gorges University, China, 2023(in Chinese).
谌静. 内掺磷酸镁水泥的3D打印混凝土可打印性和早期强度的研究. 硕士学位论文, 三峡大学, 2023.
56 Yang Z. Preparation and properties of 3D printed steel slag cement-based materials. Master's Thesis, Institutes of Technology of Henan, China, 2024(in Chinese).
杨章. 3D打印钢渣-水泥基材料的制备和性能研究. 硕士学位论文, 河南理工大学, 2024.
57 Chen M, Li L, Wang J, et al. Construction Building Materials, 2020, 234, 117391.
58 Lee K W, Lee H J, Choi M S. Construction Building Materials, 2022, 347, 128498.
59 Xue L. Preparation and properties of 3D printed cement-based materials. Master's Thesis, Beijing University of Technology, China, 2018(in Chinese).
薛龙. 3D打印水泥基材料的制备与性能研究. 硕士学位论文, 北京工业大学, 2018.
60 Ma G, Li Z, Wang L. Construction Building Materials, 2018, 162, 613.
61 Arounothayan A R, Nematollahi B, Khayat K H, et al. Cement Concrete Composites, 2023, 136, 104854.
62 Mohan M K, Rahul A V, Van T K, et al. Cement and Concrete Research, 2021, 139, 106258.
63 Nerella V, Beigh M, Fataei S, et al. Cement Concrete Research, 2019, 115, 530.
64 Zhang D W, Wang D M, Piao C A, et al. Journal of Applied Basic and Engineering Sciences, 2018, 26(3), 596(in Chinese).
张大旺, 王栋民, 朴春爱, 等. 应用基础与工程科学学报, 2018, 26(3), 596.
65 Chen M, Jin Y, Sun K, et al. Journal of Materials Research Technology, 2023, 26, 2481.
66 Xu Z Y, Zhang D W, Li H, et al. Construction Building Materials, 2022, 339, 127685.
67 Zhang M X, Fan K J, Xu P, et al. Concrete and Cement Products, 2021(11), 18(in Chinese).
张敏霞, 范开均, 徐平, 等. 混凝土与水泥制品, 2021(11), 18.
68 Liu C, Wang X, Chen Y, et al. Cement Concrete Composites, 2021, 122, 104158.
69 Yu X T. Effects of curing conditions on shrinkage and mechanical properties of 3D printed cement mortar. Master's Thesis, Harbin Institute of Technology, China, 2022(in Chinese).
于鑫彤. 养护条件对3D打印水泥砂浆收缩和力学性能的影响. 硕士学位论文, 哈尔滨工业大学, 2022.
70 Zhang S Y, Jiang Y Q, Wang Y, et al. Concrete and Cement Products, 2020(5), 6(in Chinese).
章苏阳, 蒋亚清, 王玉, 等. 混凝土与水泥制品, 2020(5), 6.
71 Kondepudi K, Subramaniam K V, Nemaatollahi B, et al. Cement Concrete Composites, 2022, 131, 104581.
72 Wu X K. Effect of basalt fiber properties on printability and mechanical properties of 3D printed concrete. Master's Thesis, Institutes of Technology of Henan, China, 2024(in Chinese).
武喜凯. 玄武岩纤维特性对3D打印混凝土可打印性及力学性能影响研究. 硕士学位论文, 河南理工大学, 2024.
73 Zhang C, Deng Z C, Wang Z B, et al. Silicate Bulletin, 2021, 40(6), 1870(in Chinese).
张超, 邓智聪, 汪智斌, 等. 硅酸盐通报, 2021, 40(6), 1870.
74 Li J R. Basic mechanical properties and numerical simulation of 3D printing cement-based materials. Master's Thesis, Southeast University, China, 2024(in Chinese).
李俊睿. 3D打印水泥基材料基本力学性能与数值模拟. 硕士学位论文, 东南大学, 2024.
75 Wolfs R J M, Bos F P, Salet T A M. Cement and Concrete Research, 2019, 119, 132.
76 Cheng W B. Influence of printing parameters on construction performance of 3D printing cement-based materials. Master's Thesis, Beijing Jiaotong University, China, 2021(in Chinese).
程文博. 打印参数对3D打印水泥基材料施工性能的影响. 硕士学位论文, 北京交通大学, 2021.
77 Nair S A, Tripathi A, Neithalath N. Construction Building Materials, 2024, 411, 134246.
78 Liu M J. Experimental research and engineering practice on axial pressure performance of 3D printed concrete wall. Master's Thesis, Harbin Institute of Technology, China, 2021(in Chinese).
刘明鉴. 3D打印混凝土墙轴压力学性能试验研究及其工程实践. 硕士学位论文, 哈尔滨工业大学, 2021.
79 Souza M T, Ferreira I M, Demoraes E G, et al. Journal of Building Engineering, 2020, 32, 101833.
80 Shahzad Q, Li F Y. Construction and Building Materials, 2023, 389, 131794.
81 Liu X H, Pan Z F, Zhang H P, et al. Industrial Architecture, 2024, 54(1), 56(in Chinese).
刘新虎, 潘钻峰, 张海鹏, 等. 工业建筑, 2024, 54(1), 56.
82 Pan Z F, Si D, Tao J, et al. Case Studies in Construction Materials, 2023, 18, 01949.
[1] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[2] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[3] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[4] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[5] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[6] 孙威杰, 刘帅, 黄玖龙, 李冬冬, 袁泽博, 张岩, 冯运莉. 碳含量对孪晶诱发塑性钢高周疲劳行为的影响[J]. 材料导报, 2025, 39(16): 24060167-7.
[7] 戴浩, 韩海波, 刘湘波, 高远洋, 孙燕琼, 池金虎, 魏艳红. 单筒排气管焊接有限元模拟及工序优化研究[J]. 材料导报, 2025, 39(13): 23110187-5.
[8] 庞学玉, 李海龙, 黄贤斌, 刘敬平, 吕开河, 孙金声. 高温高压下固井水泥石力学行为及其关键影响因素[J]. 材料导报, 2025, 39(12): 24060212-7.
[9] 魏栋, 项豪特, 李萌, 弓满锋, 李恒, 楚志兵. 高性能管材冷轧成形微观织构演变与调控研究进展[J]. 材料导报, 2025, 39(12): 24050238-11.
[10] 张括, 李明鹏, 周国安, 张龄匀. 加载频率对镍钛形状记忆合金循环压缩过程中相变、塑性与传热相互作用的影响[J]. 材料导报, 2025, 39(10): 24060186-6.
[11] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[12] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[13] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[14] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[15] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed