Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24060186-6    https://doi.org/10.11896/cldb.24060186
  金属与金属基复合材料 |
加载频率对镍钛形状记忆合金循环压缩过程中相变、塑性与传热相互作用的影响
张括1, 李明鹏2, 周国安1, 张龄匀3,*
1 香港科技大学机械与航天工程学院,香港 999077
2 武汉大学土木建筑工程学院,武汉 430000
3 广东生态工程职业学院智能制造学院,广州 510000
Effect of Loading Frequency on the Interactions Among Phase Transformation, Plasticity and Heat Transfer in Cyclic Compression of NiTi Shape Memory Alloys
ZHANG Kuo1, LI Mingpeng2, ZHOU Guoan1, ZHANG Lingyun3,*
1 Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
2 School of Civil Engineering, Wuhan University, Wuhan 430000, China
3 School of Intelligent Manufacturing, Guangdong Eco-engineering Polytechnic, Guangzhou 510000, China
下载:  全 文 ( PDF ) ( 14250KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 探讨了多晶超弹性镍钛形状记忆合金在静止空气环境下位移控制循环的压缩响应,特别关注了在最大应变4.2%的条件下,频率范围为0.000 7~50 Hz合金的动态行为。深入探讨了相变、奥氏体相的塑性流动以及传热这三种机制之间的相互作用。利用热成像技术同步记录了温度振荡与应力-应变关系的动态演变。研究结果显示,在给定应变条件下,存在一个关键的频率阈值。当频率低于这一阈值时,热机械响应主要由纯相变与传热之间的频率依赖耦合所主导;一旦频率超过该阈值,奥氏体相的宏观塑性变形便会显著参与循环的瞬态阶段,并与相变和传热发生复杂的相互作用。这一发现为深入理解镍钛形状记忆合金在动态加载条件下的性能提供了重要的参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张括
李明鹏
周国安
张龄匀
关键词:  形状记忆合金  循环压缩  热累计  塑性变形  频率效应    
Abstract: Displacement-controlled cyclic compressive responses of polycrystalline super-elastic NiTi shape memory alloyswere investigated at a maximum strain of 4.2% and over frequency ranging from 0.000 7 Hz to 50 Hz in stagnant air. The study focused on the interactions among three mechanisms:phase transformation (PT), plastic flow of austenite phase and heat transfer. Temperature oscillations recorded by thermography technique were synchronized with the evolutions of stress-strain relations. It is found that for a given strain, there is a critical frequency, below which the thermomechanical responses are dominated by the frequency dependent coupling between pure PT and heat transfer and above which the macroscopic plastic deformation of austenite phase gets involved in the transient stage of the cycling and interacts with PT and heat transfer. This finding provides an important reference for us to understand the performance of NiTi shape memory alloys under dynamic loading conditions.
Key words:  shape memory alloys    cyclic compression    heat accumulation    plastic deformation    frequency effect
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TB61+1  
  TB64  
  TQ051.5  
基金资助: 国家自然科学基金(11532010;11972263)
通讯作者:  *张龄匀,广东生态工程职业学院智能制造学院讲师。目前主要从事固态制冷材料与器件等方面的研究。lzhangcm@connect.ust.hk   
作者简介:  张括,博士,目前主要研究领域为超弹性形状记忆合金材料与力学。
引用本文:    
张括, 李明鹏, 周国安, 张龄匀. 加载频率对镍钛形状记忆合金循环压缩过程中相变、塑性与传热相互作用的影响[J]. 材料导报, 2025, 39(10): 24060186-6.
ZHANG Kuo, LI Mingpeng, ZHOU Guoan, ZHANG Lingyun. Effect of Loading Frequency on the Interactions Among Phase Transformation, Plasticity and Heat Transfer in Cyclic Compression of NiTi Shape Memory Alloys. Materials Reports, 2025, 39(10): 24060186-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060186  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24060186
1 Jani J, Leary M, Subic A, et al. Materials & Design, 2014, 56, 1078.
2 Tušek J, Engelbrecht K, Eriksen D, et al. Nature Energy, 2016, 1, 16134.
3 Zhou G, Zhu Y, Yao S, et al. Joule, 2023, 7(9), 2003.
4 Zhou G, Li Z, Wang Q, et al. Nature Energy, 2024, 9, 862.
5 Qian S X, Yuan L F, Yan G, et al. Journal of Refrigeration, 2018, 39(1), 1(in Chinese).
钱苏昕, 袁丽芬, 晏刚, 等. 制冷学报, 2018, 39(1), 1.
6 Yuan B, Zeng L, Qian M F, et al. Materials Reports, 2018, 32(17), 3033(in Chinese).
袁勃, 曾磊, 钱明芳, 等. 材料导报, 2018, 32(17), 3033.
7 Li Z, Sun Q. International Journal of Plasticity, 2002, 18, 1481.
8 Favier D, Louche H, Schlosser P, et al. Acta Materialia, 2007, 55, 5310.
9 Kan Q, Yu C, Kang G, et al. Mechanics of Materials, 2006, 97, 48.
10 Maletta C, Sgambitterra E, Furgiuele F, et al. International Journal of Fatigue, 2014, 66, 78.
11 Yin H, He Y, Moumni Z, et al. International Journal of Fatigue, 2016, 88, 166.
12 Zhang K, Kang G, Sun Q, Scripta Materialia, 2019, 159, 62.
13 Zhang H L, Feng H Q, Wang X T., et al. Engineering Mechanics, 2023, 40(6), 236(in Chinese).
张海潞, 冯海全, 王晓天, 等. 工程力学, 2023, 40(6), 236.
14 Wang Y T, Feng H Q, Wang X T. et al. Engineering Mechanics, 2020, 37(9), 230(in Chinese).
王越彤, 冯海全, 王晓天, 等. 工程力学, 2020, 37(9), 230.
15 Zhang K, Li M, Sun Q, et al. Journal of Mechanics and Physics of Solids, 2024, 191, 105782.
16 Gall K, Sehitoglu H, Chumlyakov Y et al. Acta Materialia, 1999, 47(4), 1203.
17 Gall K, Sehitoglu H. International Journal of Plasticity, 1999, 15, 69.
18 Yu C, Kang G, Song D, et al. International Journal of Plasticity, 2015, 67, 69.
19 Gall K, Maier H. Acta Materialia, 2002, 50, 4643.
20 Kang G, Kan Q, Qian L et al. Mechanics of Materials, 2009, 41, 139.
21 Kan Q, Kang G. International Journal of Plasticity, 2020, 26, 441.
22 Kan Q, Yu C, Kang G, et al. Mechanics of Materials, 2016, 97, 48.
23 Yin H, He Y, Sun Q. Journal of the Mechanics and Physics of Solids, 2014, 67 100.
24 Huang K, Yin H, Sun Q. Engineering Mechanics, 2017, 34(11).
[1] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[2] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[3] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[4] 毕广利, 冉吉上, 满宏生, 姜静, 孟帅举, 毕广阔, 王海东, 李元东. 挤压Mg-Y-Ni-Co合金的显微组织、加工性能及塑性变形行为[J]. 材料导报, 2024, 38(21): 23060144-8.
[5] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[6] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[7] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[8] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[9] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[10] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[11] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[12] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[13] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[14] 汪建强, 徐斌, 谢碧君, 张健杨, 孙明月. ODS钢在热加工过程中纳米氧化物演化行为的研究进展[J]. 材料导报, 2022, 36(19): 20110267-8.
[15] 万里, 张奇, 张勇, 唐建国, 邓运来. Cr和Mn对汽车用铝合金型材压溃性能的影响[J]. 材料导报, 2022, 36(18): 20110147-4.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed