Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24020054-7    https://doi.org/10.11896/cldb.24020054
  金属与金属基复合材料 |
WE43镁合金温热压缩下织构演变及再结晶行为
郑惠泽1, 何建丽1,*, 高晨鑫2, 章海明2, 向雨欣1
1 上海工程技术大学材料科学与工程学院,上海 200030
2 上海交通大学材料科学与工程学院,上海 200030
Texture Evolution and Recrystallization Behavior of WE43 Magnesium Alloy Under Warm Compression
ZHENG Huize1, HE Jianli1,*, GAO Chenxin2, ZHANG Haiming2, XIANG Yuxin1
1 School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 200030, China
2 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
下载:  全 文 ( PDF ) ( 54444KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对挤压态WE43镁合金材料沿挤出方向进行了压缩实验,通过SEM/EBSD表征手段对150 ℃压缩后应变量为0.15和0.25的变形试样以及原样进行对比分析,研究了不同应变量下WE43镁合金微观组织结构演化规律及其微观塑性变形机理。结果表明,随着应变量的增加,晶粒不断细化,孪晶总体积分数呈先增加后减少的趋势。变形中大量相同和相对孪晶变体的激活,促使有利于非基面滑移的初始织构〈1010〉//ED向着有利于基面滑移的取向〈0001〉//ED转变。在对比拉伸孪晶和二次孪晶诱导的动态再结晶研究中发现,拉伸孪晶在细化组织结构中有着比二次孪晶更大的潜力。动态再结晶方式除了孪晶诱导动态再结晶,还包括连续动态再结晶和第二相粒子诱导动态再结晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑惠泽
何建丽
高晨鑫
章海明
向雨欣
关键词:  镁合金WE43  微观结构演变  孪晶  织构  动态再结晶    
Abstract: Compression experiments were carried out along the extrusion direction for the extruded WE43 magnesium alloy material. By means of SEM/EBSD characterization, comparative analyses of the original specimens and the deformed specimens with strain variables of 0.15 and 0.25 after warm compression at 150 ℃ were carried out to study the microstructure evolution law and microplastic deformation mechanism of WE43 magnesium alloy under different strain variables. The results show that with the increase of strain, the grains are continuously refined, and the total volume fraction of twin crystals increases first and then decreases. The deformation is driven by the activation of a large number of identical and relative twinned variants, which drives the transition of the initial weave, 〈1010〉//ED, which favors nonbasal slip, toward the orientation 〈0001〉//ED, which favors basal slip. Comparing dynamic recrystallization induced by tensile and secondary twins, it indicates that tensile twins have a greater potential than secondary twins in refining the tissue structure. Dynamic recrystallization modes include continuous dynamic recrystallization and second-phase particle-induced dynamic recrystallization in addition to twin-induced dynamic recrystallization.
Key words:  magnesium alloy WE43    microstructural evolution    twinning    texture    dynamic recrystallization
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TG146.22  
基金资助: 国家自然科学基金(51805313);上海市Ⅲ类高峰学科——材料科学与工程(高能束智能加工与绿色制造)
通讯作者:  *何建丽,上海工程技术大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事镁合金高温塑形成形机理、微观组织演化机制和表面改性等研究。hejianling792@163.com   
作者简介:  郑惠泽,上海工程技术大学材料科学与工程学院硕士研究生,在何建丽副教授的指导下进行研究。目前主要研究领域为镁合金塑性变形机理及其数值模拟。
引用本文:    
郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
ZHENG Huize, HE Jianli, GAO Chenxin, ZHANG Haiming, XIANG Yuxin. Texture Evolution and Recrystallization Behavior of WE43 Magnesium Alloy Under Warm Compression. Materials Reports, 2025, 39(5): 24020054-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020054  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24020054
1 Ding W J. Science and technology of magnesium alloys, Science Press, China, 2007, pp.365 (in Chinese).
丁文江. 镁合金科学与技术, 科学出版社, 2007, pp.365.
2 Pollock T M. Science, 2010, 328(5981), 986.
3 Song J, Chen J, Xiong X, et al. Journal of Magnesium and Alloys, 2022, 10(4), 863.
4 Xue Z Y, Mu M H, Han X Z, et al. Hot Working Technology, 2022, 51(3), 1 (in Chinese).
薛志勇, 母明浩, 韩修柱, 等. 热加工工艺, 2022, 51(3), 1.
5 Ding W J, Wu G H, Li Z Q, et al. Aerospace Shanghai, 2019, 36(2), 1 (in Chinese).
丁文江, 吴国华, 李中权, 等. 上海航天, 2019, 36(2), 1.
6 Tan J, Wang F L, Jiang B, et al. Chinese Journal of Nature, 2023, 45(2), 93 (in Chinese).
谭军, 王芳磊, 蒋斌, 等. 自然杂志, 2023, 45(2), 93.
7 Mei R B, Shi X L, Bao L, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(5), 1289 (in Chinese).
梅瑞斌, 史现利, 包立, 等. 中国有色金属学报, 2022, 32(5), 1289.
8 Guo Y, He X, Dai Y, et al. Materials Science and Engineering A, 2022, 858, 144136.
9 Liu X, Hu M Y, Xie C, et al. The Chinese Journal of Nonferrous Metals, 2022, 32(6), 1641 (in Chinese).
刘筱, 胡铭月, 谢超, 等. 中国有色金属学报, 2022, 32(6), 1641.
10 Lv N, Zhao L Y, Yan H, et al. Journal of Alloys and Compounds, 2023, 966, 171590.
11 Wang P, Mao Y, Liu Y, et al. Materials Science and Engineering A, 2019, 742, 309.
12 Wang N, Xiao L, Luo S, et al. Journal of Materials Research and Technology, 2023, 27, 4356.
13 Lee J H, Lee J U, Kim S H, et al. Journal of Materials Science & Technology, 2018, 34(10), 1747.
14 Shi Z Z, Liu X F. Journal of Alloys and Compounds, 2017, 692, 274.
15 Zhao C Y. Basic investigation on the influence of alloying elements on strain hardening behaviors of magnesium alloys. Ph. D. Thesis, Chongqing University, China, 2020 (in Chinese).
赵超越. 合金元素对镁合金加工硬化行为影响的基础研究. 博士学位论文, 重庆大学, 2020.
16 Barnett M R. Materials Science and Engineering A, 2007, 464(1), 1.
17 Barnett M R. Materials Science and Engineering A, 2007, 464(1), 8.
18 Cizek P, Barnett M R. Scripta Materialia, 2008, 59(9), 59.
19 Shi Z Z, Zhang Y, Wagner F, et al. Acta Materialia, 2015, 83, 17.
20 Liu F Y, Guo C F, Xin R L, et al. Journal of Magnesium and Alloys, 2019, 7(2), 258.
21 Wang X X, Mao P L, Wang R F, et al. Materials Science and Enginee-ring A, 2020, 772, 138814.
22 Feng Y H, Qian L Y, Sun C Y, et al. Journal of Materials Research and Technology, 2023, 25, 5159.
23 Guo C F. Strain accommodation effect between deformation twins in magnesium alloys and their variant selection mechanism. Ph. D. Thesis, Chongqing University, China, 2016 (in Chinese).
郭长发. 镁合金中变形孪晶间的应变协调效益及其变体选择机制. 博士学位论文, 重庆大学, 2016.
24 Sun L, Li F, Li Y Q, et al. Journal of Materials Research and Technology, 2023, 887, 145774.
25 Li J R, Xie D S, Zeng Z R, et al. Journal of Materials Science & Technology, 2023, 132, 1.
26 Zheng C, Chen S F, Cheng M, et al. Journal of Alloys and Compounds, 2024, 976, 173239.
27 Guglielmi P O, Ziehmer M, Lilleodden E T. Acta Materialia, 2018, 150, 195.
28 Levinson A, Mishra R K, Doherty R D, et al. Acta Materialia, 2013, 61, 5966.
29 Guan D, Rainforth W M, Ma L, et al. Acta Materialia, 2017, 126, 132.
[1] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[2] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[3] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[4] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[5] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[6] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[7] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[8] 褚绍阳, 干勇, 仇圣桃, 项利, 田玉石, 石超. 高牌号无取向硅钢生产流程中织构控制研究现状[J]. 材料导报, 2024, 38(13): 23020235-9.
[9] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[10] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[11] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[12] 欧阳祚琼, 罗兵辉, 邓攀, 莫文锋, 柏振海. 终轧温度对2024铝合金晶间腐蚀和力学性能的影响[J]. 材料导报, 2023, 37(11): 21110100-7.
[13] 柴涛, 耿传刚, 房大然, 赵圣诗, 林小娉, 董允. 柱状多晶Mg-Gd-Y合金形变组织演变及形变硬化机制[J]. 材料导报, 2023, 37(10): 21110055-6.
[14] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[15] 汪勇, 李光强, 刘玉龙, 高洋, 郭小龙, 朱诚意. Nb微合金化对取向硅钢常化板中析出物特征及组织和织构的影响[J]. 材料导报, 2022, 36(7): 20110126-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed