Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24020003-9    https://doi.org/10.11896/cldb.24020003
  无机非金属及其复合材料 |
乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
曾鲁平1, 乔敏1, 赵爽1, 王伟1,*, 陈俊松1, 朱伯淞1, 冉千平2, 洪锦祥1
1 江苏苏博特新材料股份有限公司,南京 211103
2 东南大学材料科学与工程学院,南京 211189
Effect of Ethylene-vinyl-acetate Copolymer on Mechanical Strength, Permeability Properties, and Hydrated Microstructure of Sprayed Concrete
ZENG Luping1, QIAO Min1, ZHAO Shuang1, WANG Wei1,*, CHEN Junsong1, ZHU Bosong1, RAN Qianping2, HONG Jinxiang1
1 Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 28870KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对比研究了乙烯-醋酸乙烯酯共聚物(EVA)以可再分散乳胶粉与聚合物乳液不同形态掺入后对喷射混凝土力学强度与渗透性能的影响,并对速凝水化体系下聚合物颗粒的物理成膜过程以及化学作用进行了探究。结果表明:EVA共聚物通过颗粒吸附、团聚及局部成膜作用,降低了速凝阶段水化产物钙矾石的数量并延缓了水泥C3S的早期水化过程,造成速凝浆体凝结时间的明显延长以及早期强度降低,其以乳液形态掺入带来的早期水化延缓作用更强。硬化喷射混凝土内部直径130 μm以上的圆形气泡数量受聚合物掺入影响而明显增多,造成硬化孔隙率增大同时降低了后期强度,但以乳胶粉形态掺入时EVA共聚物带来的引气作用及硬化气泡球形度改善效果更强。水化28 d,EVA共聚物在速凝浆体中可形成连续聚合物膜状结构,并充分分散、填充在钙矾石骨架与浆体孔隙之间,显著提高了喷射混凝土的抗水渗性能与弯曲韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾鲁平
乔敏
赵爽
王伟
陈俊松
朱伯淞
冉千平
洪锦祥
关键词:  乙烯-醋酸乙烯酯共聚物  喷射混凝土  水化微观结构  渗透性能    
Abstract: The mechanical strength and permeability properties of sprayed concrete modified with ethylene-vinyl acetate copolymer ( EVA ) were evaluated, respectively in the form of redispersible polymer powder and polymer latex.And the physical film forming process and chemical action of EVA copolymer introuduced into accelerated cement paste were analyzed.The results show that particle adsorption, agglomeration and local film formation effect aroused by EVA copolymer were observed in accelerated cement paste, thus leading to the weakened formation of ettringite occurred in rapid hydration stage and retarding the early age hydration of alite minerals, especially when EVA copolymer was introduced in the form of polymer latex.Then the setting time of accelerated cement pastes is delayed significantly and the early strength is reduced with EVA copolymer.Compared to the pure sample, an increasing trend of circular bubbles with the diameter of over 130 μm was observed in hardened polymer modified sprayed concrete, thereby raising the hardened porosity and reducing the long-term strength and obvious air-entraining effect and improved spherical degree of hardened bubbles were observed with polymer powder used.At hydration time of 28 d, the continuous polymer film structure formed by EVA copolymer could be observed clearly in accelerated cement paste and fully dispersed and filled between the ettringite rods and hydration pores, thus enhancing water permeability resistance and flexural toughness of sprayed concrete, obviously.
Key words:  ethylene-vinyl-acetate copolymer    sprayed concrete    hydrated microstructure    permeability properties
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  TU528.53  
基金资助: 国家重点研发计划(2023YFB3711400);国家自然科学基金面上项目(52178213); 江苏省自然科学基金(BK20221199;BK20211030;BK20211031)
通讯作者:  *王伟,现为江苏苏博特新材料股份有限公司研发高级工程师。目前主要研究领域为喷射混凝土及超早强技术。wangw@cnjsjk.cn   
作者简介:  曾鲁平,现为江苏苏博特新材料股份有限公司研发工程师。目前主要研究领域为喷射混凝土关键材料开发与应用技术。
引用本文:    
曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响[J]. 材料导报, 2025, 39(5): 24020003-9.
ZENG Luping, QIAO Min, ZHAO Shuang, WANG Wei, CHEN Junsong, ZHU Bosong, RAN Qianping, HONG Jinxiang. Effect of Ethylene-vinyl-acetate Copolymer on Mechanical Strength, Permeability Properties, and Hydrated Microstructure of Sprayed Concrete. Materials Reports, 2025, 39(5): 24020003-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020003  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24020003
1 Soh Y. Cement and Concrete Research, 2003, 33(10), 1497.
2 Jia H L, Gong H J, Guo M S, et al. Materials Reports, 2022, 36(20), 160 (in Chinese).
贾海林, 项海军, 郭明生, 等. 材料导报, 2022, 36(20), 160.
3 Al-zahrani M M, Maslehuddin M, Al-dulaijan S U, et al. Cement and Concrete Composite, 2003, 25(4), 527.
4 Wang P M, Zhao G R, Zhang G F. Journal of the Chinese Ceramic Society, 2018, 46(2), 256(in Chinese).
王培铭, 赵国荣, 张国防. 硅酸盐学报, 2018, 46(2), 256.
5 Chen D P, Liu F, Qi Y T. Materials Reports, 2015, 29(16), 115 (in Chinese).
陈东平, 刘芳, 齐艳涛. 材料导报, 2015, 29(16), 115.
6 Gretz M, Plank J. Cement and Concrete Research, 2011, 41(2), 184.
7 Betioli A M, Filho J H, Cincotto M A, et al. Construction and Building Materials, 2009, 23(11), 3332.
8 Smaniotto S, Neuner M, Dummer A, et al. Engineering Fracture Mechanics, 2022, 267, 108409.
9 Qiao Q, Chai H C, Zhang X T, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(10), 3394 (in Chinese).
乔巧, 柴虎成, 张笑天, 等. 硅酸盐通报, 2022, 41(10), 3394.
10 Li X B, Qu G L, Yang C M, et al. Journal of Mining & Safety Engineering, 2019, 36(1), 95 (in Chinese).
李学彬, 曲广龙, 杨春满, 等. 采矿与安全工程学报, 2019, 36(1), 95.
11 Jiang P W, Zhang Z H, Wang H, et. al. Construction and Building Materials, 2022, 333, 127402.
12 Archibald J F, Degane D O, Tan M Q, et al. Mineral Engineering, 2002(5), 32 (in Chinese).
阿奇博尔德J F, 德加内 D O, 谭明乾, 等. 矿业工程, 2002(5), 32.
13 Romer M, Holzer L, Pfiffner M. Cement and Concrete Composite, 2003, 25(8), 1111.
14 Ning D P, Xu J Y, Wang Z H, et al. Journal of Air Force Engineering University, 2022, 23(2), 106 (in Chinese).
宁镱彭, 许金余, 王志航, 等. 空军工程大学学报(自然科学版), 2022, 23(2), 106.
15 Silva D A, Roman H R, Gleize P J P. Cement and Concrete Research, 2002, 32(9), 1383.
16 Wang P M, Zhao G R, Zhang G F. Journal of the Chinese Ceramic Society, 2014, 42(5), 653 (in Chinese).
王培铭, 赵国荣, 张国防. 硅酸盐学报, 2014, 42(5), 653.
17 Zhong S Y, Wang P M. Journal of Building Materials, 2004(2), 168 (in Chinese).
钟世云, 王培铭. 建筑材料学报, 2004(2), 168.
18 Leung CKY, Lai R, Lee AYF. Cement and Concrete Research, 2005, 35(4), 788.
19 GB/T 35159-2017 喷射混凝土用速凝剂[S] (in Chinese).
GB/T 35159-2017 Flash setting admixtures for shotcrete[S].
20 Wang R, Wang P M, Yao L J. Construction and Building Materials, 2012, 27(1), 259.
21 Zeng L P, Qiao M, Wang W, et al. Journal of Building Materials, 2021, 24(1), 31 (in Chinese).
曾鲁平, 乔敏, 王伟, 等. 建筑材料学报, 2021, 24(1), 31.
22 Ma H Y, Tian Y, Li Z J. Journal of Materials in Civil Engineering, 2011 23(10), 1412.
23 Zeng L P, Zhao S, Wang W, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1781 (in Chinese).
曾鲁平, 赵爽, 王伟, 等. 硅酸盐学报, 2020, 48(11), 1781.
24 Silva D A, John V M, Ribeiro J L D, et al. Cement and Concrete Research, 2001, 31(8), 1177.
25 Wang P M, Zhao G R, Zhang G F. X-ray CT comparsion on pore structures in cement mortar modified by different redispersible polymer powders. 7th National Conference on Commercial Mortar, Beijing, 2017, pp.132 (in Chinese).
王培铭, 赵国荣, 张国防. 基于X-CT法不同可再分散乳胶粉改性砂浆孔结构的对比. 第七届全国商品砂浆学术交流会论文集. 北京, 中国建材工业出版社, 2017, pp.132.
26 Talukdar S, Heere R. Case Studies in Construction Materials, 2019, 11(1), 1.
27 Betioli A M, Gleize P J P, John V M, et al. Cement and Concrete Composite, 2012, 34(2), 255.
28 Zhang J L, Yin G Y, Ni C B, et. al. China Concrete and Cement Products, 2023(7), 57 (in Chinese).
张金林, 尹谷雨, 倪常彪, 等. 混凝土与水泥制品, 2023(7), 57.
29 Yao J L, Hu H M, Han F. Science Technology and Engineering, 2023, 23(27), 11816 (in Chinese).
姚江龙, 扈惠敏, 韩风. 科学技术与工程, 2023, 23(27), 11816.
30 Trussell N, Nordtug P, Asadi I, et al. Construction and Building Materials, 2023, 400, 132423.
31 Salvador R P, Cavalaro SHP, Cincotto M A, et al. Cement and Concrete Research, 2016, 89(1), 230.
32 Salvador R P, Cavalaro SHP, Segura I, et al. Construction and Building Materials, 2016, 111, 389.
33 Afridi M U K, Chaudhary Z U, Ohama Y, et al. Cement and Concrete Research, 1995, 25(2), 271.
34 Peng Y, Zhao G R, Wang P M. Journal of Chinese Electron Microscopy Society, 2016, 35(3), 240 (in Chinese).
彭宇, 赵国荣, 王培铭. 电子显微学报, 2016, 35(3), 240.
[1] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[2] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[3] 王伟, 霍建勋, 曾鲁平, 刘伟, 王育江. 单层衬砌喷射混凝土层间力学特性与界面抗渗性能研究[J]. 材料导报, 2023, 37(15): 22010218-7.
[4] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[5] 王家赫. 喷射混凝土水化度的试验与理论模型研究[J]. 材料导报, 2022, 36(23): 21030064-5.
[6] 葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
[7] 王家滨, 许云喆, 张凯峰, 王斌. 硝酸侵蚀/碳化交替作用下衬砌喷射混凝土的中性化研究及预测模型[J]. 材料导报, 2020, 34(8): 8058-8063.
[8] 陈运灿, 闫二虎, 狄翀博, 王金华, 黄浩然, 王豪, 刘威, 徐芬, 孙立贤. 5B族(Nb,V和Ta)合金渗氢膜的研究进展[J]. 材料导报, 2020, 34(21): 21001-21011.
[9] 王家滨, 王斌, 张凯峰, 李恒. 盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J]. 材料导报, 2020, 34(16): 16055-16061.
[10] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[11] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[12] 王家滨, 牛荻涛, 何晖. 多因素作用衬砌喷射混凝土中性化及预测模型[J]. 材料导报, 2019, 33(24): 4078-4085.
[13] 王家滨, 牛荻涛. 盐湖卤水侵蚀喷射混凝土衬砌损伤演化[J]. 材料导报, 2019, 33(20): 3426-3435.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed