Research Status of Texture Control in the Manufacturing Process for High Grade Non-oriented Silicon Steel
CHU Shaoyang1, GAN Yong1, QIU Shengtao1,*, XIANG Li2, TIAN Yushi2, SHI Chao2
1 National Engineering Research Center of Continuous Casting Technology, Central Iron and Steel Research Institute, Beijing 100081, China 2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract: Recently, against the background of energy conservation and emission reduction, the use of clean energy produced by hydropower, wind power and nuclear power has been increasing rapidly, and high grade non-oriented silicon steel is the most widely used core material for the aforementioned energy generation methods. Therefore, the development of high grade non-oriented silicon steel with low iron loss and high magnetic induction is a prerequisite for high-quality developments of the clean-energy industry. Generally, the magnetic induction and iron loss of high grade non-oriented silicon steel are affected by texture, which is influenced by the manufacturing process;however, the process flow of high grade non-oriented silicon steel is long, and hence, texture control is typically affected by numerous process factors. Thus, to achieve high magnetic induction of high grade non-oriented silicon steel with low iron loss, it is necessary to avoid {111} textures that are unfavourable to the magnetic properties while promoting the {100} and {110} textures that are favourable to the magnetic properties during production. First, this paper introduces the process flow of high grade non-oriented silicon steel and compares the magnetic properties (P15/50 and B50) of products obtained from steel corporations worldwide. Second, factors influencing the promotion of favourable texture formation for high grade non-oriented silicon steel during steelmaking, hot rolling, normalisation, cold rolling and final annealing are elaborated. Finally, the manufacturing processes favourable for the texture improvement of high grade non-oriented silicon steel are summarised, and suggestions for the development of texture control strategies are put forth.
褚绍阳, 干勇, 仇圣桃, 项利, 田玉石, 石超. 高牌号无取向硅钢生产流程中织构控制研究现状[J]. 材料导报, 2024, 38(13): 23020235-9.
CHU Shaoyang, GAN Yong, QIU Shengtao, XIANG Li, TIAN Yushi, SHI Chao. Research Status of Texture Control in the Manufacturing Process for High Grade Non-oriented Silicon Steel. Materials Reports, 2024, 38(13): 23020235-9.
1 Wang L M, Tan Q Y, Li N, et al. Journal of the Chinese Society of Rare Earths, 2014, 32(5), 513 (in Chinese). 王龙妹, 谭清元, 李娜, 等. 中国稀土学报, 2014, 32(5), 513. 2 Paolinelli S C, Cunha M A. Journal of Magnetism and Magnetic Materials, 2006, 304(2), e596. 3 Lee S H, Lee D N. International Journal of Mechanical Sciences, 2001, 43(9), 2003. 4 Gobernado P, Petrov R H, Kestens L A I. Scripta Materialia, 2012, 66(9), 625. 5 Sanjari M, He Y, Hilinski E J, et al. Journal of Materials Science, 2017, 52(6), 3288. 6 Liu H, Liu Z, Cao G, et al. Journal of Magnetism & Magnetic Materials, 2011, 323(21), 2650. 7 Sanjari M, He Y, Hilinski E J, et al. Scripta Materialia, 2016, 124, 180. 8 Mehdi M, He Y, Hilinski E J, et al. Journal of Magnetism and Magnetic Materials, 2017, 429, 150. 9 He Y, Hilinski E J. Journal of Materials Processing Technology, 2017, 242, 184. 10 He Y, Hilinski E, Li J. Metallurgical and Materials Transactions A, 2015, 46, 5352. 11 Baoshan Iron & Steel Co., Ltd. Cold-rolled non-oriented electrical steel, 2023, pp.18 (in Chinese). 宝山钢铁股份有限公司. 冷轧无取向硅钢, 2023, pp.18. 12 Beijing Shougang Co., Ltd. Non-oriented electrical steel, 2021, pp.12 (in Chinese). 北京首钢股份有限公司. 无取向电工钢产品手册, 2021, pp.12. 13 Ansteel Company Limited. Cold rolled electrical steel, 2019, pp.8 (in Chinese). 鞍钢股份有限公司. 冷轧电工钢, 2019, pp.8 . 14 Nippon Steel. Electrical steel sheets, 2019, pp.20. 15 JFE Steel Corporation. Electrical steel sheets, 2020, pp.12. 16 Li N, Xiang L, Qiu S T. Transaction of Materials and Heat Treatment, 2016, 37(6), 93 (in Chinese). 李娜, 项利, 仇圣桃. 材料热处理学报, 2016, 37(6), 93. 17 Hou C K, Liao C C. ISIJ International, 2008, 48(4), 536. 18 Li N, Wang Y, Qiu S, et al. ISIJ International, 2016, 56(7), 1260. 19 Luo X, Xiang L, Qiu S T, et al. Materials for Mechanical Engineering, 2014, 38(1), 7(in Chinese). 罗翔, 项利, 仇圣桃, 等. 机械工程材料, 2014, 38(1), 7. 20 Liu H M, Gao L. Iron and Steel, 1987, 22(11), 42 (in Chinese). 刘海明, 高力. 钢铁, 1987, 22(11), 42. 21 Zhang F, Li G Q, Zhu C Y. Journal of Functional Materials, 2013, 44(7), 1030 (in Chinese). 张峰, 李光强, 朱诚意. 功能材料, 2013, 44(7), 1030. 22 Wan Y, Chen W Q, Wu S J. High Temperature Materials & Processes, 2014, 33(2), 117. 23 Li P Z, Ma L, Ma G M, et al. Chinese Rare Earths, 2016, 37(2), 84 (in Chinese). 李培忠, 马良, 马国明, 等. 稀土, 2016, 37(2), 84. 24 Guang H B, Zhang W K, Xin X C, et al. Special Steel, 2012, 33(2), 61(in Chinese). 光红兵, 张文康, 辛宪诚, 等. 特殊钢, 2012, 33(2), 61. 25 Li N, Lu Q Y, Wang Y Q, et al. Journal of Iron and Steel Research, 2017, 29(7), 575 (in Chinese). 李娜, 陆勤阳, 王永强, 等. 钢铁研究学报, 2017, 29(7), 575. 26 Shi C J, Jin Z L, Ren H P, et al. Journal of Rare Earths, 2017, 35(3), 313. 27 He Z H, Sha Y H, Gao Y K, et al. Journal of Iron and Steel Research International, 2020, 27(11), 1345. 28 Dong H, Zhao Y, Yu X J, et al. Journal of Iron and Steel Research International, 2009, 16(6), 87. 29 Shimanaka H, Irie T, Matsumura K, et al. Journal of Magnetism and Magnetic Materials, 1980, 19, 63. 30 Suehiro R, Hayakawa Y, Takamiya T. ISIJ International, 2019, 59(2), 358. 31 Li N, Xiang L, Zhao P. Advanced Materials Research, 2013, 602-604, 437. 32 Chu S Y, Gan Y, Qiu S T, et al. China Metallurgy, 2022, 32(5), 3 (in Chinese). 褚绍阳, 干勇, 仇圣桃, 等. 中国冶金, 2022, 32(5), 3. 33 Jenko M, Vodopivec F, Pracek B. Vacuum, 1992, 43(5-7), 450. 34 Jenko M, Vodopivec F, Godec M, et al. Journal De Physique IV, 1995, 5, C7-228. 35 Godec M, Jenko M, Mast R, et al. Vacuum, 2001, 61(2-4), 153. 36 Grabke H J. ISIJ International, 1989, 29(7), 532. 37 Solyom A, Zentko A, Fric V, et al. IEEE Transactions on Magnetics, 1994, 30(2), 931. 38 Vodopivec F, Marinsek F, Gresovnik F, et al. Journal of Magnetism and Magnetic Materials, 1991, 97(1-3), 283. 39 Godec M, Jenko M, Grabke H J, et al. ISIJ International, 1999, 39(7), 745. 40 Jenko M, Vodopivec F, Grabke H J, et al. Steel Research, 1994, 65(11), 502. 41 Matsuoka S, Morita M, Furukimi O, et al. ISIJ International, 1998, 38(6), 635. 42 Sakai T, Saito Y, Kato K. Transactions of the Iron and Steel Institute of Japan, 1988, 28(12), 1037. 43 Park Y B, Lee D N, Gottstein G. Acta Materialia, 1996, 44(8), 3426. 44 Moseley D, Hu Y, Randle V, et al. Materials Science and Engineering A, 2005, 392(1-2), 283. 45 Nakayama T, Honjou N, Minaga T, et al. Journal of Magnetism and Magnetic Materials, 2001, 234(1), 59. 46 Hou C K. Journal of Magnetism and Magnetic Materials, 2008, 320(6), 1120. 47 Paepe A, Eloot K, Dilewijns J, et al. Journal of Magnetism and Magnetic Materials, 1996, 160, 129. 48 Fischer O, Schneider J. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 306. 49 Liu H T, Ma D X, Liu Z Y, et al. Journal of Functional Materials, 2012, 43(23), 3234 (in Chinese). 刘海涛, 马东旭, 刘振宇, 等. 功能材料, 2012, 43(23), 3234. 50 An L Z, Liu H T, Wang G D. Electrical Steel, 2021, 3(1), 20 (in Chinese). 安灵子, 刘海涛, 王国栋. 电工钢, 2021, 3(1), 20. 51 Stöcker A, Franke A, Hermann H, et al. Materials Science Forum, 2016, 854, 21. 52 Stöcker A, Schneider J, Scholze T, et al. Materials Science and Engineering, 2015, 82(1), 2. 53 Paolinelli S C, Cunha M A, Dafe S S F, et al. IEEE Transactions on Magnetics, 2012, 48(4), 1402. 54 Hong B D, Han K S, Kim J K, et al. Steel Research International, 2005, 76(6), 450. 55 Kim J K, Woo J S, Chang S K. Journal of Magnetism & Magnetic Materials, 2000, 215-216, 163. 56 He C X, Yang F Y, Yan G C, et al. Acta Metallurgica Sinica, 2016, 52(9), 1068 (in Chinese). 何承绪, 杨富尧, 严国春, 等. 金属学报, 2016, 52(9), 1068. 57 Chang S K, Huang W Y. Steel Research International, 2007, 78(4), 342. 58 Yashiki H, Okamoto A. IEEE Transactions on Magnetics, 1987, 23(5), 3086. 59 Cunha M A, Paolinelli S C. Steel Research International, 2005, 76(6), 424. 60 Zhang W K, Mao W M, Wang Y D, et al. Iron and Steel, 2007, 42(2), 66 (in Chinese). 张文康, 毛卫民, 王一德, 等. 钢铁, 2007, 42(2), 66. 61 Qiao J L, Liu L, Guo F H, et al. Ironmaking & Steelmaking, 2020, 47(1), 2. 62 Li Z H, Xie S K, Wang G D, et al. Journal of Alloys and Compounds, 2021, 888, 12. 63 Park J T, Szpunar J A. Journal of Magnetism and Magnetic Materials, 2009, 321(13), 1930. 64 Park J T, Szpunar J A, Han K S. Materials Science Forum, 2002, 408-412, 1258. 65 Paolinelli S C, Cunha M A, Cota A B. Journal of Magnetism and Magnetic Materials, 2008, 320(20), e642. 66 Paolinelli S C, Cunha M A, Cota A B. IEEE Transactions on Magnetics, 2015, 51(6), 2. 67 Li B L, Godfrey A, Meng Q C, et al. Acta Materialia, 2004, 52(4), 1072. 68 Inagaki H. ISIJ International, 1994, 34(4), 314. 69 Dafe S S F, Paolinelli S C, Cota A B. Journal of Magnetism and Magnetic Materials, 2011, 323(24), 3235. 70 Chu S J, Shen K Y, Sha Y H, et al. Journal of Materials Engineering, 2019, 47(8), 149 (in Chinese). 储双杰, 沈侃毅, 沙玉辉, 等. 材料工程, 2019, 47(8), 149. 71 Mun H, Lee S, Koo Y M. ISIJ International, 2017, 57(7), 1242. 72 Lin Y, Wang H X, Zhang W K, et al. China Metallurgy, 2022, 32(5), 67 (in Chinese). 林媛, 王红霞, 张文康, 等. 中国冶金, 2022, 32(5), 67. 73 Takashima M, Komatsubara M, Morito N. ISIJ International, 1997, 37(12), 1267. 74 Zhao J W, Zhang W K, Miao X. Iron and Steel, 2012, 47(11), 70 (in Chinese). 赵建伟, 张文康, 苗晓. 钢铁, 2012, 47(11), 70. 75 Zhang N, Yang P, Mao W M. Journal of Magnetism and Magnetic Materials, 2016, 397, 128. 76 Liu Z Y, Wang M, Li Z L, et al. Metallic Functional Materials, 2021, 28(6), 12 (in Chinese). 刘兆月, 王明, 李泽琳, 等. 金属功能材料, 2021, 28(6), 12. 77 Lee S, Cooman B C. ISIJ International, 2011, 51(9), 1547. 78 Zhang N, Yang P, Mao W. Materials Characterization, 2015, 108, 92. 79 Paolinelli S C, Cunha M A, Cota A B. Materials Science Forum, 2007, 558-559, 790. 80 Pedrosa J S M, Paolinelli S C, Cota A B. Journal of Magnetism and Magnetic Materials, 2015, 393, 149. 81 Samajdar I, Cicale S, Verlinden B, et al. Scripta Materialia, 1998, 39(8), 1085. 82 Park J T, Szpunar J A. Acta Materialia, 2003, 51(11), 3049. 83 Sha Y H, Sun C, Zhang F, et al. Acta Materialia, 2014, 76, 111. 84 Barnett M R, Kestens L. ISIJ International, 1999, 39(9), 929. 85 Nakamura S, Homma H. Materials Science Forum, 2004, 467-470, 162. 86 Gobernado P, Petrov R H, Moerman J, et al. Materials Science Forum, 2012, 702-703, 792. 87 Gobernado P, Petrov R, Ruiz D, et al. Advanced Engineering Materials, 2010, 12(10), 1079. 88 Liu J, Sha Y, Hu K, et al. Metallurgical and Materials Transactions A, 2014, 45, 135. 89 Cunha M A, Paolinelli S C. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 380. 90 Qin J, Yang J F, Zhang Y H, et al. Materials Letters, 2020, 259, 3. 91 Yasuda M, Kataoka T, Ushigami Y, et al. ISIJ International, 2018, 58(10), 1899. 92 Wang J, Li J, Wang X F, et al. Journal of Iron and Steel Research International, 2010, 17(11), 58. 93 Muljono D, Ferry M, Dunne D P. Materials Science and Engineering A, 2001, 303(1-2), 93. 94 Wu S Y, Lin C H, Hsu W C, et al. ISIJ International, 2016, 56(2), 332. 95 Park J T, Szpunar J A, Cha S Y. ISIJ International, 2003, 43(10), 1613. 96 Wang J, Li J, Wang X, et al. Bulletin of Materials Science, 2011, 34(7), 1479.