Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23020235-9    https://doi.org/10.11896/cldb.23020235
  金属与金属基复合材料 |
高牌号无取向硅钢生产流程中织构控制研究现状
褚绍阳1, 干勇1, 仇圣桃1,*, 项利2, 田玉石2, 石超2
1 钢铁研究总院连铸技术国家工程研究中心,北京 100081
2 北京科技大学冶金与生态工程学院,北京 100083
Research Status of Texture Control in the Manufacturing Process for High Grade Non-oriented Silicon Steel
CHU Shaoyang1, GAN Yong1, QIU Shengtao1,*, XIANG Li2, TIAN Yushi2, SHI Chao2
1 National Engineering Research Center of Continuous Casting Technology, Central Iron and Steel Research Institute, Beijing 100081, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 11030KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在节能减排的背景之下,水电、风电和核电等清洁能源行业得到了快速发展。高牌号无取向硅钢是上述发电机组应用最普遍的铁芯材料。因此,开发低铁损和高磁感的高牌号无取向硅钢是清洁能源产业高质量发展的前提条件。织构是影响高牌号无取向硅钢磁感和铁损的主要因素之一,受到生产工艺的影响。然而,高牌号无取向硅钢工艺流程长,影响织构控制的工艺因素众多。为了满足高牌号无取向硅钢在低铁损时实现高磁感,在产品加工时应尽量避免对磁性能不利的{111}织构的形成,促进对其有利的{100}和{110}织构形成。本文首先介绍了高牌号无取向硅钢的工艺流程,对比了国内外钢铁企业产品的磁性能(P15/50B50)。其次,阐述了高牌号无取向硅钢在炼钢、热轧、常化、冷轧和成品退火过程中促进有利织构形成的影响因素。最后,归纳出能促进高牌号无取向硅钢有利织构形成的生产工艺,并对织构控制的发展方向提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
褚绍阳
干勇
仇圣桃
项利
田玉石
石超
关键词:  高牌号无取向硅钢  生产工艺  织构控制  磁感    
Abstract: Recently, against the background of energy conservation and emission reduction, the use of clean energy produced by hydropower, wind power and nuclear power has been increasing rapidly, and high grade non-oriented silicon steel is the most widely used core material for the aforementioned energy generation methods. Therefore, the development of high grade non-oriented silicon steel with low iron loss and high magnetic induction is a prerequisite for high-quality developments of the clean-energy industry. Generally, the magnetic induction and iron loss of high grade non-oriented silicon steel are affected by texture, which is influenced by the manufacturing process;however, the process flow of high grade non-oriented silicon steel is long, and hence, texture control is typically affected by numerous process factors. Thus, to achieve high magnetic induction of high grade non-oriented silicon steel with low iron loss, it is necessary to avoid {111} textures that are unfavourable to the magnetic properties while promoting the {100} and {110} textures that are favourable to the magnetic properties during production. First, this paper introduces the process flow of high grade non-oriented silicon steel and compares the magnetic properties (P15/50 and B50) of products obtained from steel corporations worldwide. Second, factors influencing the promotion of favourable texture formation for high grade non-oriented silicon steel during steelmaking, hot rolling, normalisation, cold rolling and final annealing are elaborated. Finally, the manufacturing processes favourable for the texture improvement of high grade non-oriented silicon steel are summarised, and suggestions for the development of texture control strategies are put forth.
Key words:  high grade non-oriented silicon steel    manufacturing process    texture control    magnetic induction
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TG142.77  
基金资助: 国家重点研发计划(2016YFB0300305)
通讯作者:  *仇圣桃,钢铁研究总院连铸技术国家工程研究中心正高工。主要从事冶金材料技术领域基础理论及工艺方面的研发工作,包括冶金过程数学仿真、电磁技术在连铸过程的应用、连铸坯均质化及铸坯质量控制、高品质钢(电工钢、压力容器、船板等)生产技术。qiust@vip.sina.com   
作者简介:  褚绍阳,钢铁研究总院连铸技术国家工程研究中心博士研究生,主要从事无取向硅钢织构控制和特厚板坯凝固末端重压下的研究。
引用本文:    
褚绍阳, 干勇, 仇圣桃, 项利, 田玉石, 石超. 高牌号无取向硅钢生产流程中织构控制研究现状[J]. 材料导报, 2024, 38(13): 23020235-9.
CHU Shaoyang, GAN Yong, QIU Shengtao, XIANG Li, TIAN Yushi, SHI Chao. Research Status of Texture Control in the Manufacturing Process for High Grade Non-oriented Silicon Steel. Materials Reports, 2024, 38(13): 23020235-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020235  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23020235
1 Wang L M, Tan Q Y, Li N, et al. Journal of the Chinese Society of Rare Earths, 2014, 32(5), 513 (in Chinese).
王龙妹, 谭清元, 李娜, 等. 中国稀土学报, 2014, 32(5), 513.
2 Paolinelli S C, Cunha M A. Journal of Magnetism and Magnetic Materials, 2006, 304(2), e596.
3 Lee S H, Lee D N. International Journal of Mechanical Sciences, 2001, 43(9), 2003.
4 Gobernado P, Petrov R H, Kestens L A I. Scripta Materialia, 2012, 66(9), 625.
5 Sanjari M, He Y, Hilinski E J, et al. Journal of Materials Science, 2017, 52(6), 3288.
6 Liu H, Liu Z, Cao G, et al. Journal of Magnetism & Magnetic Materials, 2011, 323(21), 2650.
7 Sanjari M, He Y, Hilinski E J, et al. Scripta Materialia, 2016, 124, 180.
8 Mehdi M, He Y, Hilinski E J, et al. Journal of Magnetism and Magnetic Materials, 2017, 429, 150.
9 He Y, Hilinski E J. Journal of Materials Processing Technology, 2017, 242, 184.
10 He Y, Hilinski E, Li J. Metallurgical and Materials Transactions A, 2015, 46, 5352.
11 Baoshan Iron & Steel Co., Ltd. Cold-rolled non-oriented electrical steel, 2023, pp.18 (in Chinese).
宝山钢铁股份有限公司. 冷轧无取向硅钢, 2023, pp.18.
12 Beijing Shougang Co., Ltd. Non-oriented electrical steel, 2021, pp.12 (in Chinese).
北京首钢股份有限公司. 无取向电工钢产品手册, 2021, pp.12.
13 Ansteel Company Limited. Cold rolled electrical steel, 2019, pp.8 (in Chinese).
鞍钢股份有限公司. 冷轧电工钢, 2019, pp.8 .
14 Nippon Steel. Electrical steel sheets, 2019, pp.20.
15 JFE Steel Corporation. Electrical steel sheets, 2020, pp.12.
16 Li N, Xiang L, Qiu S T. Transaction of Materials and Heat Treatment, 2016, 37(6), 93 (in Chinese).
李娜, 项利, 仇圣桃. 材料热处理学报, 2016, 37(6), 93.
17 Hou C K, Liao C C. ISIJ International, 2008, 48(4), 536.
18 Li N, Wang Y, Qiu S, et al. ISIJ International, 2016, 56(7), 1260.
19 Luo X, Xiang L, Qiu S T, et al. Materials for Mechanical Engineering, 2014, 38(1), 7(in Chinese).
罗翔, 项利, 仇圣桃, 等. 机械工程材料, 2014, 38(1), 7.
20 Liu H M, Gao L. Iron and Steel, 1987, 22(11), 42 (in Chinese).
刘海明, 高力. 钢铁, 1987, 22(11), 42.
21 Zhang F, Li G Q, Zhu C Y. Journal of Functional Materials, 2013, 44(7), 1030 (in Chinese).
张峰, 李光强, 朱诚意. 功能材料, 2013, 44(7), 1030.
22 Wan Y, Chen W Q, Wu S J. High Temperature Materials & Processes, 2014, 33(2), 117.
23 Li P Z, Ma L, Ma G M, et al. Chinese Rare Earths, 2016, 37(2), 84 (in Chinese).
李培忠, 马良, 马国明, 等. 稀土, 2016, 37(2), 84.
24 Guang H B, Zhang W K, Xin X C, et al. Special Steel, 2012, 33(2), 61(in Chinese).
光红兵, 张文康, 辛宪诚, 等. 特殊钢, 2012, 33(2), 61.
25 Li N, Lu Q Y, Wang Y Q, et al. Journal of Iron and Steel Research, 2017, 29(7), 575 (in Chinese).
李娜, 陆勤阳, 王永强, 等. 钢铁研究学报, 2017, 29(7), 575.
26 Shi C J, Jin Z L, Ren H P, et al. Journal of Rare Earths, 2017, 35(3), 313.
27 He Z H, Sha Y H, Gao Y K, et al. Journal of Iron and Steel Research International, 2020, 27(11), 1345.
28 Dong H, Zhao Y, Yu X J, et al. Journal of Iron and Steel Research International, 2009, 16(6), 87.
29 Shimanaka H, Irie T, Matsumura K, et al. Journal of Magnetism and Magnetic Materials, 1980, 19, 63.
30 Suehiro R, Hayakawa Y, Takamiya T. ISIJ International, 2019, 59(2), 358.
31 Li N, Xiang L, Zhao P. Advanced Materials Research, 2013, 602-604, 437.
32 Chu S Y, Gan Y, Qiu S T, et al. China Metallurgy, 2022, 32(5), 3 (in Chinese).
褚绍阳, 干勇, 仇圣桃, 等. 中国冶金, 2022, 32(5), 3.
33 Jenko M, Vodopivec F, Pracek B. Vacuum, 1992, 43(5-7), 450.
34 Jenko M, Vodopivec F, Godec M, et al. Journal De Physique IV, 1995, 5, C7-228.
35 Godec M, Jenko M, Mast R, et al. Vacuum, 2001, 61(2-4), 153.
36 Grabke H J. ISIJ International, 1989, 29(7), 532.
37 Solyom A, Zentko A, Fric V, et al. IEEE Transactions on Magnetics, 1994, 30(2), 931.
38 Vodopivec F, Marinsek F, Gresovnik F, et al. Journal of Magnetism and Magnetic Materials, 1991, 97(1-3), 283.
39 Godec M, Jenko M, Grabke H J, et al. ISIJ International, 1999, 39(7), 745.
40 Jenko M, Vodopivec F, Grabke H J, et al. Steel Research, 1994, 65(11), 502.
41 Matsuoka S, Morita M, Furukimi O, et al. ISIJ International, 1998, 38(6), 635.
42 Sakai T, Saito Y, Kato K. Transactions of the Iron and Steel Institute of Japan, 1988, 28(12), 1037.
43 Park Y B, Lee D N, Gottstein G. Acta Materialia, 1996, 44(8), 3426.
44 Moseley D, Hu Y, Randle V, et al. Materials Science and Engineering A, 2005, 392(1-2), 283.
45 Nakayama T, Honjou N, Minaga T, et al. Journal of Magnetism and Magnetic Materials, 2001, 234(1), 59.
46 Hou C K. Journal of Magnetism and Magnetic Materials, 2008, 320(6), 1120.
47 Paepe A, Eloot K, Dilewijns J, et al. Journal of Magnetism and Magnetic Materials, 1996, 160, 129.
48 Fischer O, Schneider J. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 306.
49 Liu H T, Ma D X, Liu Z Y, et al. Journal of Functional Materials, 2012, 43(23), 3234 (in Chinese).
刘海涛, 马东旭, 刘振宇, 等. 功能材料, 2012, 43(23), 3234.
50 An L Z, Liu H T, Wang G D. Electrical Steel, 2021, 3(1), 20 (in Chinese).
安灵子, 刘海涛, 王国栋. 电工钢, 2021, 3(1), 20.
51 Stöcker A, Franke A, Hermann H, et al. Materials Science Forum, 2016, 854, 21.
52 Stöcker A, Schneider J, Scholze T, et al. Materials Science and Engineering, 2015, 82(1), 2.
53 Paolinelli S C, Cunha M A, Dafe S S F, et al. IEEE Transactions on Magnetics, 2012, 48(4), 1402.
54 Hong B D, Han K S, Kim J K, et al. Steel Research International, 2005, 76(6), 450.
55 Kim J K, Woo J S, Chang S K. Journal of Magnetism & Magnetic Materials, 2000, 215-216, 163.
56 He C X, Yang F Y, Yan G C, et al. Acta Metallurgica Sinica, 2016, 52(9), 1068 (in Chinese).
何承绪, 杨富尧, 严国春, 等. 金属学报, 2016, 52(9), 1068.
57 Chang S K, Huang W Y. Steel Research International, 2007, 78(4), 342.
58 Yashiki H, Okamoto A. IEEE Transactions on Magnetics, 1987, 23(5), 3086.
59 Cunha M A, Paolinelli S C. Steel Research International, 2005, 76(6), 424.
60 Zhang W K, Mao W M, Wang Y D, et al. Iron and Steel, 2007, 42(2), 66 (in Chinese).
张文康, 毛卫民, 王一德, 等. 钢铁, 2007, 42(2), 66.
61 Qiao J L, Liu L, Guo F H, et al. Ironmaking & Steelmaking, 2020, 47(1), 2.
62 Li Z H, Xie S K, Wang G D, et al. Journal of Alloys and Compounds, 2021, 888, 12.
63 Park J T, Szpunar J A. Journal of Magnetism and Magnetic Materials, 2009, 321(13), 1930.
64 Park J T, Szpunar J A, Han K S. Materials Science Forum, 2002, 408-412, 1258.
65 Paolinelli S C, Cunha M A, Cota A B. Journal of Magnetism and Magnetic Materials, 2008, 320(20), e642.
66 Paolinelli S C, Cunha M A, Cota A B. IEEE Transactions on Magnetics, 2015, 51(6), 2.
67 Li B L, Godfrey A, Meng Q C, et al. Acta Materialia, 2004, 52(4), 1072.
68 Inagaki H. ISIJ International, 1994, 34(4), 314.
69 Dafe S S F, Paolinelli S C, Cota A B. Journal of Magnetism and Magnetic Materials, 2011, 323(24), 3235.
70 Chu S J, Shen K Y, Sha Y H, et al. Journal of Materials Engineering, 2019, 47(8), 149 (in Chinese).
储双杰, 沈侃毅, 沙玉辉, 等. 材料工程, 2019, 47(8), 149.
71 Mun H, Lee S, Koo Y M. ISIJ International, 2017, 57(7), 1242.
72 Lin Y, Wang H X, Zhang W K, et al. China Metallurgy, 2022, 32(5), 67 (in Chinese).
林媛, 王红霞, 张文康, 等. 中国冶金, 2022, 32(5), 67.
73 Takashima M, Komatsubara M, Morito N. ISIJ International, 1997, 37(12), 1267.
74 Zhao J W, Zhang W K, Miao X. Iron and Steel, 2012, 47(11), 70 (in Chinese).
赵建伟, 张文康, 苗晓. 钢铁, 2012, 47(11), 70.
75 Zhang N, Yang P, Mao W M. Journal of Magnetism and Magnetic Materials, 2016, 397, 128.
76 Liu Z Y, Wang M, Li Z L, et al. Metallic Functional Materials, 2021, 28(6), 12 (in Chinese).
刘兆月, 王明, 李泽琳, 等. 金属功能材料, 2021, 28(6), 12.
77 Lee S, Cooman B C. ISIJ International, 2011, 51(9), 1547.
78 Zhang N, Yang P, Mao W. Materials Characterization, 2015, 108, 92.
79 Paolinelli S C, Cunha M A, Cota A B. Materials Science Forum, 2007, 558-559, 790.
80 Pedrosa J S M, Paolinelli S C, Cota A B. Journal of Magnetism and Magnetic Materials, 2015, 393, 149.
81 Samajdar I, Cicale S, Verlinden B, et al. Scripta Materialia, 1998, 39(8), 1085.
82 Park J T, Szpunar J A. Acta Materialia, 2003, 51(11), 3049.
83 Sha Y H, Sun C, Zhang F, et al. Acta Materialia, 2014, 76, 111.
84 Barnett M R, Kestens L. ISIJ International, 1999, 39(9), 929.
85 Nakamura S, Homma H. Materials Science Forum, 2004, 467-470, 162.
86 Gobernado P, Petrov R H, Moerman J, et al. Materials Science Forum, 2012, 702-703, 792.
87 Gobernado P, Petrov R, Ruiz D, et al. Advanced Engineering Materials, 2010, 12(10), 1079.
88 Liu J, Sha Y, Hu K, et al. Metallurgical and Materials Transactions A, 2014, 45, 135.
89 Cunha M A, Paolinelli S C. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 380.
90 Qin J, Yang J F, Zhang Y H, et al. Materials Letters, 2020, 259, 3.
91 Yasuda M, Kataoka T, Ushigami Y, et al. ISIJ International, 2018, 58(10), 1899.
92 Wang J, Li J, Wang X F, et al. Journal of Iron and Steel Research International, 2010, 17(11), 58.
93 Muljono D, Ferry M, Dunne D P. Materials Science and Engineering A, 2001, 303(1-2), 93.
94 Wu S Y, Lin C H, Hsu W C, et al. ISIJ International, 2016, 56(2), 332.
95 Park J T, Szpunar J A, Cha S Y. ISIJ International, 2003, 43(10), 1613.
96 Wang J, Li J, Wang X, et al. Bulletin of Materials Science, 2011, 34(7), 1479.
[1] 张飞, 韩富年, 卢友余, 文光华, 唐萍. 连铸保护渣技术标准体系研究进展[J]. 材料导报, 2023, 37(3): 21030265-12.
[2] 何峻峰, 江胜华, 孙伟贺, 王廉强. 拉伸荷载作用下桥梁拉索钢丝/钢筋的力-磁效应研究[J]. 材料导报, 2023, 37(13): 21120159-8.
[3] 付兵, 项利, 乔家龙, 刘静, 仇圣桃. 薄板坯连铸连轧流程制备低温Hi-B钢织构的演变及Goss晶粒的发展[J]. 材料导报, 2022, 36(9): 20120130-8.
[4] 张冲, 毕梦迪, 刘同军, 宁靖华, 段广彬, 张秀芝, 慕儒. 砂浆流变性能和外界磁场强度对钢纤维分布特征的影响[J]. 材料导报, 2022, 36(24): 21110154-6.
[5] 樊立峰, 秦美美, 岳尔斌, 肖丽俊, 何建中. 新能源汽车对无取向硅钢的技术挑战[J]. 材料导报, 2021, 35(15): 15183-15188.
[6] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[7] 苏 岚,张楚博,汪 振,米振莉. 热金属气压成型电磁感应加热有限元模拟[J]. 《材料导报》期刊社, 2017, 31(24): 182-177.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed