Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 182-177    https://doi.org/10.11896/j.issn.1005-023X.2017.024.036
  材料研究 |
热金属气压成型电磁感应加热有限元模拟
苏 岚1,张楚博1,2,汪 振1,米振莉1
1 北京科技大学工程技术研究院,北京 100083;
2 北京航空材料研究院,先进高温结构材料重点实验室,北京 100095
Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming
SU Lan1, ZHANG Chubo1,2, WANG Zhen1, MI Zhenli1
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083;
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
下载:  全 文 ( PDF ) ( 2163KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应用感应加热理论,利用麦克斯韦方程组和温度微分方程,建立了电磁场与温度场耦合的有限元数学模型,使用有限元分析软件ANSYS对热金属气压成型工艺中的电磁感应加热过程进行了模拟与分析。模拟结果表明: 随着电磁感应线圈电流频率的提高,在相等的加热时间内,金属钢管的升温速度不断增加,且最终达到的温度也进一步升高。随着电磁感应线圈电流密度的增加,在相等的加热时间内、相同的电磁感应线圈电流频率下,金属钢管的升温速度不断增加,加热效率得到有效提高,且最终达到的温度也逐步升高。随着金属钢管与线圈的间隔增加,金属钢管内、外表面的温度均逐渐降低;外表面温度的降低趋势越来越平缓,而内表面温度的降低趋势则不断加剧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏 岚
张楚博
汪 振
米振莉
关键词:  热金属气压成型  电磁感应加热  数值模拟  电磁场  温度场    
Abstract: The finite element analysis software ANSYS was employed to simulate and analyze the electromagnetic induction heating process in the hot metal gas forming process. A finite element model of temperature field coupled with electromagnetic field had been established based on induction heating theory including Maxwell equations and temperature differential equation. Simulation results showed that with the increase of current frequency of electromagnetic induction coil, under the same heating time, temperature rising rate of steel tube increased continuously, and the final temperature was raised further. With the increase of the current density of electromagnetic induction coil, under the same heating time and current frequency of electromagnetic induction coil, temperature rising rate of steel tube increased continuously, heating efficiency was improved effectively, and the final temperature was raised gradually. With increase of interval space between steel tube and electromagnetic induction coil, temperature of both outside and inner surfaces decreased gradually. The decreasing trend of outside surface temperature became gentler and gentler, while the decreasing trend of inner surface temperature became sharper and sharper.
Key words:  hot metal gas forming    electromagnetic induction heating    numerical simulation    electromagnetic field    temperature field
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG391  
基金资助: 国家重点研发计划(2017YFB0304404)
通讯作者:  米振莉:女,1971年生,博士,研究员,博士研究生导师,研究方向为先进汽车用钢开发及钢材深加工 E-mail:mi.zhenli@163.com   
作者简介:  苏岚:女,1973年生,博士,工程师,研究方向为有限元模拟与仿真 E-mail:sulan@ustb.edu.cn
引用本文:    
苏 岚,张楚博,汪 振,米振莉. 热金属气压成型电磁感应加热有限元模拟[J]. 《材料导报》期刊社, 2017, 31(24): 182-177.
SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming. Materials Reports, 2017, 31(24): 182-177.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.036  或          https://www.mater-rep.com/CN/Y2017/V31/I24/182
1 Liu Wenhua, He Tianming. Application of high strength steel in lightweight automobile[J]. Automobile Technol Mater,2008(11):49(in Chinese).
刘文华,何天明.高强度钢在汽车轻量化中的应用[J]. 汽车工艺与材料,2008(11):49.
2 Dykstra W C,Pfaffmann G D,Wu Xin. Method of forming a tubular blank into a structural component and die therefore: US, 6322645B1[P]. 2001-11-27.
3 Wei Luo. A study on tube creep behavior dominated by hoop deformation in HMGF Process[D]. Detroit Michigan: Wayne State University, 2004.
4 Kausha Anshul.Vehicle front rail impact trigger:A new conceptual design, manufacturing and impact performance through FEA simulation[D]. Detroit Michigan: Wayne State University, 2005.
5 Bruce R Gardner.The business case for the use of hot metal gas forming[EB/OL ].http://www.metal forming.com, 2001-09-30.
6 Benedyk J C. Hot metal gas forming of aluminum for manufacturing vehicle structural components[J]. Light Metal Age, 2003,61(11):16.
7 曲利岩.电磁场有限元分析技术的研究和实现[D].杭州:浙江大学,2002.
8 Chen Yaowu, Zhao Liangzhi, Huang Jinqiang. The thermal analysis of multi-cavity mould based on Pro/E and ANSYS[J].Die Mould Technol,2007(6):50(in Chinese).
陈耀武, 赵良知, 黄锦强. 基于Pro/E与ANSYS的一模多腔模具热分析[J]. 模具技术, 2007(6):50.
9 Xing Shuqing, Wang Qiang, Ma Yonglin. Simulation on temperature fields in low frequency induced heating for medium plate[J].Hot Working Technol, 2010(20):166(in Chinese).
邢淑清, 王强, 麻永林. 中厚板低频电磁感应加热温度场数值模拟[J]. 热加工工艺, 2010(20):166.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[7] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[8] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[9] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[10] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[11] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[12] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[13] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[14] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[15] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed