Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 182-177    https://doi.org/10.11896/j.issn.1005-023X.2017.024.036
  材料研究 |
热金属气压成型电磁感应加热有限元模拟
苏 岚1,张楚博1,2,汪 振1,米振莉1
1 北京科技大学工程技术研究院,北京 100083;
2 北京航空材料研究院,先进高温结构材料重点实验室,北京 100095
Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming
SU Lan1, ZHANG Chubo1,2, WANG Zhen1, MI Zhenli1
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083;
2 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095
下载:  全 文 ( PDF ) ( 2163KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应用感应加热理论,利用麦克斯韦方程组和温度微分方程,建立了电磁场与温度场耦合的有限元数学模型,使用有限元分析软件ANSYS对热金属气压成型工艺中的电磁感应加热过程进行了模拟与分析。模拟结果表明: 随着电磁感应线圈电流频率的提高,在相等的加热时间内,金属钢管的升温速度不断增加,且最终达到的温度也进一步升高。随着电磁感应线圈电流密度的增加,在相等的加热时间内、相同的电磁感应线圈电流频率下,金属钢管的升温速度不断增加,加热效率得到有效提高,且最终达到的温度也逐步升高。随着金属钢管与线圈的间隔增加,金属钢管内、外表面的温度均逐渐降低;外表面温度的降低趋势越来越平缓,而内表面温度的降低趋势则不断加剧。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏 岚
张楚博
汪 振
米振莉
关键词:  热金属气压成型  电磁感应加热  数值模拟  电磁场  温度场    
Abstract: The finite element analysis software ANSYS was employed to simulate and analyze the electromagnetic induction heating process in the hot metal gas forming process. A finite element model of temperature field coupled with electromagnetic field had been established based on induction heating theory including Maxwell equations and temperature differential equation. Simulation results showed that with the increase of current frequency of electromagnetic induction coil, under the same heating time, temperature rising rate of steel tube increased continuously, and the final temperature was raised further. With the increase of the current density of electromagnetic induction coil, under the same heating time and current frequency of electromagnetic induction coil, temperature rising rate of steel tube increased continuously, heating efficiency was improved effectively, and the final temperature was raised gradually. With increase of interval space between steel tube and electromagnetic induction coil, temperature of both outside and inner surfaces decreased gradually. The decreasing trend of outside surface temperature became gentler and gentler, while the decreasing trend of inner surface temperature became sharper and sharper.
Key words:  hot metal gas forming    electromagnetic induction heating    numerical simulation    electromagnetic field    temperature field
               出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG391  
基金资助: 国家重点研发计划(2017YFB0304404)
通讯作者:  米振莉:女,1971年生,博士,研究员,博士研究生导师,研究方向为先进汽车用钢开发及钢材深加工 E-mail:mi.zhenli@163.com   
作者简介:  苏岚:女,1973年生,博士,工程师,研究方向为有限元模拟与仿真 E-mail:sulan@ustb.edu.cn
引用本文:    
苏 岚,张楚博,汪 振,米振莉. 热金属气压成型电磁感应加热有限元模拟[J]. 《材料导报》期刊社, 2017, 31(24): 182-177.
SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming. Materials Reports, 2017, 31(24): 182-177.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.036  或          http://www.mater-rep.com/CN/Y2017/V31/I24/182
1 Liu Wenhua, He Tianming. Application of high strength steel in lightweight automobile[J]. Automobile Technol Mater,2008(11):49(in Chinese).
刘文华,何天明.高强度钢在汽车轻量化中的应用[J]. 汽车工艺与材料,2008(11):49.
2 Dykstra W C,Pfaffmann G D,Wu Xin. Method of forming a tubular blank into a structural component and die therefore: US, 6322645B1[P]. 2001-11-27.
3 Wei Luo. A study on tube creep behavior dominated by hoop deformation in HMGF Process[D]. Detroit Michigan: Wayne State University, 2004.
4 Kausha Anshul.Vehicle front rail impact trigger:A new conceptual design, manufacturing and impact performance through FEA simulation[D]. Detroit Michigan: Wayne State University, 2005.
5 Bruce R Gardner.The business case for the use of hot metal gas forming[EB/OL ].http://www.metal forming.com, 2001-09-30.
6 Benedyk J C. Hot metal gas forming of aluminum for manufacturing vehicle structural components[J]. Light Metal Age, 2003,61(11):16.
7 曲利岩.电磁场有限元分析技术的研究和实现[D].杭州:浙江大学,2002.
8 Chen Yaowu, Zhao Liangzhi, Huang Jinqiang. The thermal analysis of multi-cavity mould based on Pro/E and ANSYS[J].Die Mould Technol,2007(6):50(in Chinese).
陈耀武, 赵良知, 黄锦强. 基于Pro/E与ANSYS的一模多腔模具热分析[J]. 模具技术, 2007(6):50.
9 Xing Shuqing, Wang Qiang, Ma Yonglin. Simulation on temperature fields in low frequency induced heating for medium plate[J].Hot Working Technol, 2010(20):166(in Chinese).
邢淑清, 王强, 麻永林. 中厚板低频电磁感应加热温度场数值模拟[J]. 热加工工艺, 2010(20):166.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[6] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[7] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[8] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[9] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[10] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[11] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[12] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[13] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[14] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[15] 席翔, 夏延秋, 李晓鹤, 冯欣. 颗粒填充型聚合物的导热性能与摩擦磨损性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 681-688.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed