Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23030304-7    https://doi.org/10.11896/cldb.23030304
  金属与金属基复合材料 |
基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化
郑志军*, 郑翔
华南理工大学机械与汽车工程学院,广州 510640
Temperature Field Simulation and Process Optimization of SLM Forming of 316L Stainless Steel Based on Laser Remelting
ZHENG Zhijun*, ZHENG Xiang
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 15863KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 SLM成形过程中激光重熔可改善冶金质量和提高性能,但是目前激光重熔对温度场的影响尚不清楚。本工作利用有限元方法建立316L不锈钢模型,对比未重熔与激光重熔的温度场特征,分析不同重熔工艺参数下的温度结果和不同重熔工艺参数下所制备样品的致密度和孔隙尺寸。结果表明,激光重熔有较好的预热效果,单层成形最低温度提高了约69%,多层成形因热量扩散影响预热效果仅将温度提高10%。激光重熔工艺对激光第一次扫描的最高温度没有影响,但可提高第二次扫描的温度。重熔激光能量密度从29 J/m升至117 J/m,最高温度上升了36.40%,最低温度上升了12%。致密度的改善不明显,但孔隙尺寸有明显的减小。当激光重熔能量密度为50 J/m时,致密度高达99.95%,孔隙的深度和宽度下降了64.9%和35.2%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑志军
郑翔
关键词:  选区激光熔化  激光重熔  316L不锈钢  温度场仿真    
Abstract: Laser remelting during SLM forming can improve metallurgical quality and performance, but the effect of laser remelting on the temperature field is still unclear. In this work, we use the finite element method to establish a model of 316L stainless steel, compare the temperature field characteristics of unremelted and remelted, and analyse the temperature results under different remelting process parameters; using prepared samples to analyse the density and pore size under different remelting process parameters. The results show that laser remelting has a good preheating effect, with a minimum temperature increase of approximately 69% for single-layer forming and only a 10% increase for multi-layer forming due to the effect of heat diffusion. The laser remelting process has no effect on the maximum temperature of the first laser scan, but can increase the temperature of the second scan. The remelting laser energy density increase from 29 to 117 J/m, with a maximum temperature increase of 36.40% and a minimum temperature increase of 12%. The improvement in density is not significant, but there is a significant reduction in pore size. When the laser remelting energy density is 50 J/m, the density is as high as 99.95% and the depth and width of the pores decreased by 64.9% and 35.2%.
Key words:  selective laser melting    laser re-melting    316L stainless steel    temperature field
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG665  
基金资助: 广东省自然科学基金项目(2021A1515010398)
通讯作者:  *郑志军,华南理工大学教授,1998 年于重庆建筑大学获学士学位,2003 年和 2012 年于华南理工大学分别获得硕士和博士学位。2016 年在澳大利亚联邦科学与工业研究院(CSIRO)做访问学者。主要从事块体纳米材料的双尺度结构的形成机制与微观电化学行为以及金属 3D打印材料的组织表征与腐蚀行为方面的研究。在国内外著名刊物发表论文 50 多篇,包括Corrosion Science、Journal of Solid State Electrochemistry和 Materials Science and Engineering A等。发明专利 5 项。主持或参与国家自然科学基金、省部产学研项目、省攻关、省基金等国家级、省市级项目及企业横向等项目 30 多项。zjzheng@scut.edu   
引用本文:    
郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
ZHENG Zhijun, ZHENG Xiang. Temperature Field Simulation and Process Optimization of SLM Forming of 316L Stainless Steel Based on Laser Remelting. Materials Reports, 2024, 38(17): 23030304-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23030304  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23030304
1 Yang Y Q, Chen J, Song C H, et al. Laser & Optoelectronics Progress, 2018, 55(1), 9(in Chinese).
杨永强, 陈杰, 宋长辉, 等. 激光与光电子学进展, 2018, 55(1), 9.
2 Wang W, Liu X, Pan L. Key Engineering Materials, 2019, 803, 32.
3 Luo X L, Liu M H, Li Z H, et al. Chinese Journal of Lasers, 2021, 48(14), 52(in Chinese).
罗心磊, 刘美红, 黎振华, 等. 中国激光, 2021, 48(14), 52.
4 Yasa E, Kruth J P. Rapid Prototyping Journal, 2011, 17(5), 312.
5 Wang D, Wu S B, Fu F, et al. Materials & Design, 2017, 117, 121.
6 Kempenk K, Yasa E, Thijs L, et al. Physics Procedia, 2011, 12, 255.
7 Liu Z Y, Qian B, Li P, et al. Mechanical Science and Technology for Aerospace Engineering, 2019, 38 (4), 566(in Chinese).
刘志远, 钱波, 李培, 等. 机械科学与技术, 2019, 38(4), 566.
8 Chen S, Tao F H, Jia C Z, et al. Surface Technology, 2020, 49 (12), 209(in Chinese).
陈帅, 陶凤和, 贾长治, 等. 表面技术, 2020, 49(12), 209.
9 Ye X, Wu M P, Miao X J, et al. Surface Technology, 2021, 50 (8), 301(in Chinese).
叶秀, 武美萍, 缪小进, 等. 表面技术, 2021, 50(8), 301.
10 Lv F, Liang H X, Xie D Q, et al. Journal of Alloys and Compounds, 2021, 854, 156866.
11 Ghorbani J, Li J, Srivastava A K. Journal of Manufacturing Processes, 2020, 56, 726.
12 Foroozmehr A, Badrossamay M, Foroozmehr E, et al. Materials & Design, 2016, 117, 221.
13 Ke L D, Yin J, Zhu H H, et al. Acta Metallurgica Sinica, 2020, 56 (3), 374(in Chinese).
柯林达, 殷杰, 朱海红, 等. 金属学报, 2020, 56(3), 374.
14 Xiang Z W, Yan R, Wu X Y, et al. Optik, 2020, 206, 164316.
15 Peng G Y. Numerical simulation on temperature field and stress field during selective laser melting of titanium alloy Master's Thesis, Huazhong University of Science & Technology, 2018(in Chinese).
彭刚勇. 激光选区熔化成形钛合金温度场和应力场数值模拟硕士学位论文, 华中科技大学, 2018.
16 Zhao J M, Lu L, Wang J R, et al. Materials Reports, 2021, 35(S2), 410(in Chinese).
赵金猛, 卢林, 王静荣, 等. 材料导报, 2021, 35(S2), 410.
17 Yuan P P, Gu D D. Journal of Physics D Applied Physics, 2015, 48(3), 035303.
[1] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[2] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[3] 许玉婷, 李玉泽, 王建元. 选区激光熔化铝合金及其复合材料的研究进展[J]. 材料导报, 2024, 38(15): 23100101-13.
[4] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[5] 曹宇, 白朴存, 刘飞, 侯小虎. 选区激光熔化IN718合金固溶过程成分均匀化规律的研究[J]. 材料导报, 2023, 37(21): 22040096-7.
[6] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[7] 袁信翊, 刘杨, 李明轩, 陆晓峰, 朱晓磊. 基于打印参数的选区激光熔化构件内部形貌调控研究现状[J]. 材料导报, 2022, 36(21): 20080263-9.
[8] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[9] 马玉天, 许佳玉, 高钰璧, 刘博, 胡勇, 丁雨田, 陈大林, 陈韩锋. SLM成形Inconel 738合金缺陷的演变及形成机理[J]. 材料导报, 2022, 36(13): 21040269-7.
[10] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[11] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[12] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142-23152.
[13] 季文彬, 徐立奎, 戴士杰, 张争艳. 激光选区熔化成型316L不锈钢的工艺参数对硬度与微观组织的影响[J]. 材料导报, 2021, 35(22): 22125-22131.
[14] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[15] 褚夫众, 张曦, 黄文静, 侯娟, 张恺, 黄爱军. 选区激光熔化铝合金缺陷的形成机制和对力学性能的影响:综述[J]. 材料导报, 2021, 35(11): 11110-11118.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed