Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 191-199    https://doi.org/10.11896/j.issn.1005-023X.2017.024.038
  材料研究 |
电化学射流加工的电场仿真及实验研究
张成光1,2,张 勇2,张飞虎2
1 周口师范学院机械与电气工程学院,周口 466000;
2 哈尔滨工业大学机电工程学院,哈尔滨 150001
Electric Field Simulation and Experiment of Electrochemical Jet Machining
ZHANG Chengguang1,2, ZHANG Yong2, ZHANG Feihu2
1 College of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou 466000;
2 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001
下载:  全 文 ( PDF ) ( 1094KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 首先建立电化学射流加工去除模型,并基于电解液喷射流场建立三维电场仿真模型,采用ANSYS进行三维电场仿真,得到工件阳极表面的电场强度分布规律。研究表明,电压和喷射距离对电化学射流加工速度的影响很大,喷射角度、喷嘴直径和喷射压力对电化学射流加工的速度影响较小,电解液浓度(电导率)对电化学射流加工的电场强度没有影响,但对电化学射流加工的电流密度影响很大,电解液浓度对电化学射流加工速度的影响很大。然后进行不同工艺参数下电化学射流加工材料去除率实验,结果表明电压、喷射距离和电解液浓度对材料去除率的影响很大,与电场仿真结果一致。最后以SKD11模具钢为例进行NaNO3和NaCl电解液的电化学射流加工的表面形貌观察,结果表明,采用NaCl电解液的电化学加工后工件表面存在“微裂纹”;而采用NaNO3电解液的电化学加工后工件表面不存在“微裂纹”,加工过程中工件表面有Cr析出,加工区域氧化膜厚度是不均匀的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张成光
张 勇
张飞虎
关键词:  电化学射流加工  电场仿真  ANSYS  去除模型  表面形貌    
Abstract: The removal model of electrochemical jet machining (ECJM) and three dimensional model of electric field simulation were established based on the electrolyte jet flow field. The electric field of ECJM was simulated by ANSYS, obtaining distribution of electric field on the surface of the anode workpiece. It also suggests that voltage and jet distance have a great influence on velocity of ECJM, jet angle, nozzle diameter and jet pressure have little influence on velocity of ECJM. The electrolyte concentration (conductivity) has no effect on electric field intensity of ECJM. However, the electrolyte concentration (conductivity) has a great influence on current density of ECJM, the electrolyte concentration has a great influence on speed of ECJM. The material removal rate experiments of ECJM were carried under different electrochemical jet process parameters. The experimental results show that the voltage and electrolyte concentration and jet distance have a great influence on material removal rate of ECJM. It is consistent with the electric field simulation. Finally, the experiments of surface morphology were carried with SKD11 steel dies. The experimental results show that the workpiece surface of ECJM exist “micro cracks” with NaCl solution as electrolyte, the workpiece surface of ECJM has no “micro cracks” with NaNO3 solution as electrolyte. The Cr precipitate on the workpiece surface in the process of ECJM, the thickness of oxide film is uneven at machining region of workpiece surface.
Key words:  electrochemical jet machining (ECJM)    electric field simulation    ANSYS    removal model    surface morphology
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG662  
基金资助: 国家自然科学基金(51275116);航空科学基金(2012EE77010);黑龙江省博士后启动基金(LBH-Q11090);周口师范学院高层次人才科研启动基金(ZKNUC2016020)
通讯作者:  张勇:男,1977年生,博士,副教授,博士研究生导师,研究方向为光学超光滑表面超精密加工技术、超精密加工专用装备技术 E-mail:hit_zy@hit.edu.cn   
作者简介:  张成光:男,1981年生,博士,讲师,研究方向为磨料水射流加工、电化学射流加工 E-mail:zhangchengguang@126.com
引用本文:    
张成光,张 勇,张飞虎. 电化学射流加工的电场仿真及实验研究[J]. 《材料导报》期刊社, 2017, 31(24): 191-199.
ZHANG Chengguang, ZHANG Yong, ZHANG Feihu. Electric Field Simulation and Experiment of Electrochemical Jet Machining. Materials Reports, 2017, 31(24): 191-199.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.038  或          https://www.mater-rep.com/CN/Y2017/V31/I24/191
1 Zhang Zhaoyang, Li Zhongyang, Qin Changliang,et al. Analysis ofstress-etching quality based on nanosecond pulse laser electrochemical machining[J]. Acta Phys Sin, 2013,62(9):094210(in Chinese).
张朝阳, 李中洋, 秦昌亮,等. 脉冲激光与电化学复合的应力刻蚀加工质量研究[J].物理学报, 2013,62(9):094210.
2 Zhu D, Xu H Y. Improvement of electrochemical machining accuracy by using dual pole tool[J]. J Mater Processing Technol, 2002,129:15.
3 Li Y, Zheng Y F, Yang G, et al. Localized electrochemical micromachining with gap control[J]. Sensors Actuators A: Phys, 2003,108:144.
4 Sharma S, Jain V K, Shekhar R. Electrochemical drilling of inconel superalloy with acidified sodium chloride electrolyte[J]. Int Adv Manufacturing Technol, 2002,19(7):492.
5 Datta M. Microfabrication by electrochemical metal removal[J]. IBM J Res Development, 1998,42(5):665.
6 Zhang Yunjuan, Xing Pifeng, Wei Jianjun, et al. Experimental study on electropolishing of tantalum in sulfuric acid-methanol[J]. Rare Metal Mater Eng, 2011,40(12):2184(in Chinese).
张运娟, 邢丕峰, 韦建军,等. 硫酸甲醇体系中电解抛光钽的实验研究[J]. 稀有金属材料与工程, 2011,40(12):2184.
7 Kozak J, Rajurkar K P, Balkrishna R. Study of electrochemical jet machining processes[J]. Trans ASME, Manufacturing Sci Eng, 1996,118(4):490.
8 Sen Mohan, Shan H S. Electro jet drilling using hybrid NNGA approach[J]. Robotics Computer-Integrated Manufacturing, 2007,23:17.
9 Sen M, Shan H S. Finite element analysis of the electro jet drilling process[J]. Int J Modeling Simulation, 2007,11(1):24.
10Wataru Natsu,Tomone Ikeda, Masanori Kunieda. Generating complicated surface with electrolyte jet machining[J]. Precision Eng, 2007,31:33.
11Kunieda M, Mizugai K, Watanabe S. Electrochemical micromachining using flat electrolyte jet[J]. CIRP Annals-Manufacturing Technol, 2011,60(1):251.
12Matthias Hackert-Oschatzchcn, Gunnar Mcichsner, Mike Zinecker, et al. Micro machining with continuous electrolytic free jet[J]. Precision Eng, 2012,36(4):612.
13Yang Peijian, Qu Ningsong, Liu Zhuang,et al. Investigation of micro-pits in the micro-electrolyte jet machining process[J]. Mechan Sci Technol Aerospace Eng, 2010,29(10):1291(in Chinese).
杨培剑, 曲宁松, 刘壮,等. 毛细管电极电液束加工微小凹坑试验研究[J]. 机械科学与技术, 2010,29(10):1291.
14Liu Jia, Xu Zhengyang, Wan Longkai, et al. Design and experiment of electrolyte flow mode in electrochemical machining of blisk[J]. Acta Aeronautica ET Astronautica Sinica, 2014,35(1):259(in Chinese).
刘嘉, 徐正扬, 万龙凯, 等. 整体叶盘叶型电解加工流场设计及实验[J]. 航空学报, 2014,2014,35(1):259.
15Zhang Hua, Xu Jiawen, Zhao Jianshe. Simulation and experimental research on jet electrolytic drilling[J]. China Mechan Eng, 2011,22(11):2624(in Chinese).
张华, 徐家文, 赵建社. 喷射电解加工小孔的数值模拟与实验研究[J]. 中国机械工程, 2011,22(11):2624.
16Feng Yuxiang, Xu Wenji, Yang Xiaolong,et al. Experimental research on electrolyte jet machining of 3J21 alloy[J]. Electro-machining Mould, 2014(2):33(in Chinese).
冯玉祥, 徐文骥, 杨晓龙, 等. 电液束加工3J21合金试验研究[J].电加工与模具, 2014(2):33.
17Li Xiaoxia, Li Fuyuan, Liu Pu,et al. Forming shape of narrow groove machined by electro jet machining[J]. Adv Mater Res, 2012,411:349.
18范植坚, 李新忠, 王天诚. 电解加工与复合电解加工[M]. 北京: 国防工业出版社, 2008.
19曹立礼. 材料表面科学[M]. 北京: 清华大学出版社, 2009.
[1] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[2] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[3] 王旭, 牛宗伟, 王晓明, 赵阳, 韩国峰, 常青, 付华, 滕涛, 赵菲菲. 外场(力)辅助射流电沉积研究现状[J]. 材料导报, 2021, 35(5): 5107-5121.
[4] 徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究[J]. 材料导报, 2021, 35(2): 2125-2132.
[5] 王友德, 史涛, 夏敏, 徐善华. 基于形貌的结构钢锈蚀评价指标及提取方法[J]. 材料导报, 2021, 35(16): 16138-16143.
[6] 魏凤春, 李明哲, 张晓, 关春龙. 碳纤维增强砂轮基体的有限元模态分析研究[J]. 材料导报, 2020, 34(Z2): 590-593.
[7] 刘鹏飞, 王思捷, 殷凤仕, 单腾, 乔玉林. 2024铝合金表面激光除漆工艺及机理[J]. 材料导报, 2020, 34(24): 24121-24126.
[8] 王文权, 李雅倩, 李欣, 刘亮, 陈飞. 选区激光熔化制备Ni-Cr-B-Si合金粉末的微观组织与性能[J]. 材料导报, 2020, 34(2): 2077-2082.
[9] 曹勇, 焦增凯, Sultan Alzoabi, 周生刚. 新型节能Pb(1%Ag)/Al层状复合阳极电化学分析和电位分布模拟[J]. 材料导报, 2020, 34(18): 18014-18018.
[10] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[11] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[12] 李安邦, 徐善华. 中性盐雾加速腐蚀钢结构表面形貌分形维数表征[J]. 材料导报, 2019, 33(20): 3502-3507.
[13] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[14] 祝璐,尹沛羊,邓湘云,李建保,张伟,金宏. Ce3+掺杂钛酸钡纳米管薄膜的制备与性能[J]. 《材料导报》期刊社, 2018, 32(11): 1924-1927.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed