Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24050200-8    https://doi.org/10.11896/cldb.24050200
  无机非金属及其复合材料 |
碳化硅晶须对超高性能混凝土力学性能的影响
牛旭婧1, 郭晨怡1, 吴家奕1, 张佳豪1, 朋改非2,*, 丁宏3
1 中国矿业大学(北京)力学与土木工程学院,北京 100083
2 北京交通大学土木建筑工程学院,北京 100044
3 北京建工新型建材有限责任公司,北京 100015
Influence of Silicon Carbide Whiskers (SiCw) on Mechanical Properties of Ultra-high Performance Concrete
NIU Xujing1, GUO Chenyi1, WU Jiayi1, ZHANG Jiahao1, PENG Gaifei2,*, DING Hong3
1 School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
2 Faculty of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
3 Beijing Construction Engineering Group, Advanced Construction Materials Limited Liability Company, Beijing 100015, China
下载:  全 文 ( PDF ) ( 11313KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究了碳化硅晶须(Silicon carbide whiskers,SiCw)对超高性能混凝土(Ultra-high performance concrete,UHPC)力学性能的影响,并通过X射线衍射分析、扫描电子显微镜和压汞法对掺加碳化硅晶须后UHPC的微观结构进行了测定。结果表明:碳化硅晶须不利于基体早期(8 h内)力学性能的提高,但对其后期力学性能具有显著提升作用。这主要是由于:晶须外表面的SiO2保护膜早龄期时吸附溶液中的Ca2+,在一定程度上延缓了水泥水化的进行;而随着龄期的延长,晶须的成核效应、填充效应和桥接阻裂作用有效发挥,同时,晶须外表面的SiO2保护膜还会与水泥水化生成的氢氧化钙晶体发生反应,促使更多额外C-(A)-S-H凝胶的生成。此外,较大的长径比使得SiCw与UHPC基体的接触面积增加,二者间界面粘结力更强,导致晶须拔出过程中消耗能量更多,因此更有利于UHPC力学性能的提高。但过高掺量的晶须难以均匀分散,容易团聚于UHPC基体中并形成缺陷,进而对混凝土的力学性能产生不利影响,试验以掺量0.15%时效果最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛旭婧
郭晨怡
吴家奕
张佳豪
朋改非
丁宏
关键词:  超高性能混凝土  碳化硅晶须  长径比  力学性能  微观结构    
Abstract: Influence of silicon carbide whiskers (SiCw) on mechanical properties of ultra-high performance concrete (UHPC) was investigated. Moreover, microstructure of UHPC modified by SiCw was determined by means of scanning electron microscopy, mercury intrusion porosimetry and X-ray diffraction analysis. The results showed that SiCw is not conducive to improving the mechanical properties of matrix at the early age (within 8 h), but has a positive effect on the mechanical properties in the later stage. This is mainly due to that the SiO2 protective film on the whiskers adsorbed Ca2+ in the solution at the early age, which can delay the hydration of cement to a certain extent. With the extension of curing age, the nucleation effect, filling effect and bridging effect of whiskers are effectively exerted. Meanwhile, the SiO2 protective film on the surface of SiCw may also react with calcium hydroxide crystals generated by the cement hydration, thus resulting in the formation of more additional C-(A)-S-H gels. In addition, larger aspect ratio increases the contact area between SiCw and the UHPC matrix to get stronger interface adhesion between them, resulting in more energy consumption during the pulling out process, which is more conducive to improving the mechanical properties of UHPC. However, excessive SiCw is difficult to uniformly disperse, and they easily aggregate in the matrix and form defects, which will adversely affect the mechanical properties of UHPC. The optimum dosage is 0.15% in this experiment.
Key words:  ultra-high performance concrete    silicon carbide whisker    aspect ratio    mechanical property    microstructure
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52378277;52008230;51878032;52130901);北京市自然科学基金(8172036;8212013);中央高校基本科研业务费(2023ZKPYLJ05)
通讯作者:  朋改非,博士,北京交通大学土木建筑工程学院教授、博士研究生导师。目前主要从事超高性能混凝土、高性能混凝土、再生混凝土等方面的研究工作。gfpeng@bjtu.edu.cn   
作者简介:  牛旭婧,博士,中国矿业大学(北京)力学与土木工程学院副教授、博士研究生导师。目前主要从事高性能、超高性能混凝土和纤维增强水泥基复合材料的性能研究。
引用本文:    
牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
NIU Xujing, GUO Chenyi, WU Jiayi, ZHANG Jiahao, PENG Gaifei, DING Hong. Influence of Silicon Carbide Whiskers (SiCw) on Mechanical Properties of Ultra-high Performance Concrete. Materials Reports, 2025, 39(15): 24050200-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050200  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24050200
1 Yoo D Y, Oh T, Banthia N. Cement and Concrete Composites, 2022, 134, 104730.
2 Peng G F, Niu X J, Shang Y J, et al. Cement and Concrete Research, 2018, 109, 147.
3 Chen M, Chen Z, Xuan Y, et al. Cement and Concrete Composites, 2023, 139, 105046.
4 Khan M, Lao J, Ahmad M R, et al. Construction and Building Materials, 2023, 384, 131469.
5 Yoo D Y, Chun B, Kim J J. Cement and Concrete Research, 2019, 122, 196.
6 Bae Y, Pyo S. Engineering Structures, 2020, 222, 111131.
7 Yoo D Y, Yoon Y S. International Journal of Concrete Structures and Materials, 2016, 10, 125.
8 Huang K H, Xie J H, Feng Y, et al. Construction and Building Materials, 2023, 384, 131396.
9 Luo Z, Zhi T, Liu X, et al. Cement and Concrete Composites, 2023, 142, 105211.
10 Meng T, Ying K, Yu H, et al. Composites Part B, Engineering, 2022, 242, 110046.
11 Li H, Chen Y, Moeen M, et al. Journal of Materials in Civil Engineering, 2023, 35(2), 04022425.
12 Cui K, Lu D, Jiang T, et al. Journal of Cleaner Production, 2023, 416, 137843.
13 Esmaeili J, Romouzi V, Kasaei J, et al. Journal of Building Engineering, 2023, 80, 107908,
14 Oh T, Chun B, Lee S K, et al. Cement and Concrete Research, 2024, 175, 107379.
15 Xu J, Tang J H, Gao C, et al. Journal of the Chinese Ceramic Society, 2024, 52(2), 533(in Chinese).
徐洁, 汤金辉, 高畅, 等. 硅酸盐学报, 2024, 52(2), 533.
16 Zhang B J, Peng Z G, Feng Q, et al. Journal of the Chinese Ceramic Society, 2021, 49(10), 2286(in Chinese).
张博建, 彭志刚, 冯茜, 等. 硅酸盐学报, 2021, 49(10), 2286.
17 Yang K, Long G, Tang Z, et al. Journal of Building Engineering, 2023, 69, 106308.
18 Cao K, Liu G, Li H, et al. Materials, 2022, 15(3), 947.
19 Xue R, Liu P, Zhang Z, et al. Ceramics International, 2021, 47(13), 18150.
20 Li M, He M, Yu Y, et al. Journal of Adhesion Science and Technology, 2019, 33(1), 50.
21 Shi T, Lan Y, Hu Z, et al. International Journal of Concrete Structures and Materials, 2022, 16(1), 2.
22 Han Y X, Shao S J, Shi T, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(7), 2300 (in Chinese).
韩炎兴, 邵斯杰, 施韬, 等. 硅酸盐通报, 2023, 42(7), 2300.
23 Lan Y J, Shi T, Fu Y Y, et al. Open Ceramics, 2021, 6, 100107.
24 Ye W, Fu J. Case Studies in Construction Materials, 2023, 19, e02334.
25 Peng G F, Zhang G, Lei Z H, et al. Journal of Building Engineering, 2023, 67, 105870.
26 Yu K Q, Ding Y, Liu J P, et al. Cement and Concrete Composites, 2020, 106, 103459.
27 Lamba N, Raj R, Singh P. Transactions of Civil Engineering, 2024, 48, 2191.
28 Zhao Z F, Wu X, Zhang Z Y, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(2), 465(in Chinese).
赵志方, 吴旭, 张振宇, 等. 硅酸盐通报, 2021, 40(2), 465.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed