Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24050203-7    https://doi.org/10.11896/cldb.24050203
  金属与金属基复合材料 |
反应堆水化学对锆合金耐腐蚀性能影响研究现状
陈天旭, 廖京京*, 邱绍宇
中国核动力研究设计院先进核能技术全国重点实验室,成都 610213
Research Status on the Effect of Reactor Water Chemistry on the Corrosion Resistance of Zirconium Alloys
CHEN Tianxu, LIAO Jingjing*, QIU Shaoyu
State Key Laboratory of Advanced Nuclear Energy Technology, Nuclear Power Institute of China, Chengdu 610213, China
下载:  全 文 ( PDF ) ( 15898KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锆合金由于其良好的综合性能在压水反应堆燃料包壳领域得到广泛应用,在反应堆运行过程中,高温水腐蚀是导致锆合金包壳失效并决定燃料服役寿命的主要原因。一回路水环境作为锆合金包壳的服役环境,需要起到传递热能、抑制腐蚀产物沉积等作用,水化学的优化是提高反应堆经济性与安全性的重要措施之一。锆合金的耐腐蚀性能受到水化学环境显著影响,本文综述了几种水化学参数对锆合金耐腐蚀性能的影响研究进展,探讨了不同水化学参数对锆合金腐蚀的影响机理,为反应堆水化学改善以及锆合金腐蚀行为研究提供参考,并对未来反应堆水化学以及锆合金材料的研究方向作出展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈天旭
廖京京
邱绍宇
关键词:  锆合金  水化学  腐蚀    
Abstract: Zirconium alloys are extensively utilized in reactor fuel cladding for their superior properties, including high corrosion resistance and low thermal neutron absorption cross-section and good mechanical properties. However, the main cause of failure in zirconium alloy cladding during reactor operation is its susceptibility to corrosion, a subject extensively researched. As the service environment of zirconium alloy, the water environment plays a role in inhibiting the corrosion of materials except the transfer of heat energy, and the optimization of water chemistry is one of the most important measures to improve the economy and safety of the reactor. This paper reviews the influence of water chemistry on the corrosion resistance of zirconium alloys, and discusses how different chemical parameters affect this process. It provides insights into how water chemistry affects zirconium alloy's corrosion resistance, offers guidance on the future research directions of reactor water chemistry and zirconium alloy materials.
Key words:  zirconium alloy    water chemistry    corrosion
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TG172  
基金资助: 国家自然科学基金(52101104);四川省自然科学基金(2023NSFSC0409);中核集团青年英才项目
通讯作者:  廖京京,博士,中国核动力研究设计院副研究员。目前主要从事先进核反应堆包壳材料工艺及使役性能等方面的研究工作。liaojingjing00@foxmail.com   
作者简介:  陈天旭,现为中国核动力研究设计院硕士研究生,在廖京京副研究员以及邱绍宇研究员的指导下进行研究。目前主要研究领域为核材料腐蚀。
引用本文:    
陈天旭, 廖京京, 邱绍宇. 反应堆水化学对锆合金耐腐蚀性能影响研究现状[J]. 材料导报, 2025, 39(15): 24050203-7.
CHEN Tianxu, LIAO Jingjing, QIU Shaoyu. Research Status on the Effect of Reactor Water Chemistry on the Corrosion Resistance of Zirconium Alloys. Materials Reports, 2025, 39(15): 24050203-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050203  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24050203
1 Motta A T, Couet A, Comstock R J. Annual Review of Materials Research, 2015, 45(1), 311.
2 Allen T R, Konings R J M, Motta A T, et al. Comprehensive Nuclear Materials. 2020, 64.
3 Bell B D C, Murphy S T, Burr P A, et al. Corrosion Science, 2016, 105, 36.
4 Cox B. Journal of Nuclear Materials, 2005, 336(2-3), 331.
5 Zhang T K, Li M R, Bai Y S, et al. The report on the development of China's nuclear energy (2023), Social Science Academic Press, China, 2023, pp. 8(in Chinese).
张廷克, 李闽榕, 白云生, 等. 中国核能发展报告(2023), 社会科学文献出版社, 2023, pp. 8.
6 Lister D. Journal of nuclear Science Technology, 2015, 52(4), 451.
7 Couet A, Motta A T, Ambard A, et al. Corrosion Science, 2017, 119, 1.
8 Harding J H. Journal of Nuclear Materials, 1993, 202(3), 216.
9 Couet A, Motta A T, Ambard A. Corrosion Science, 2015, 100, 73.
10 Ensor B, Motta A T, Lucente A, et al. Journal of Nuclear Materials, 2022, 558, 153358.
11 Kautz E, Gwalani B, Yu Z, et al. Journal of Nuclear Materials, 2023, 585, 154586.
12 Suchorab K, Gawęda M, Kosińska A, et al. Materials Characterization, 2023, 205, 113373.
13 Hu J, Setiadinata B, Aarholt T, et al. In:Zirconium in the nuclear industry:18th international symposium. US, 2018, pp. 93.
14 Allen T R, Konings R J M, Motta A T, et al. Comprehensive Nuclear Materials, 2012, 5, 49.
15 Bojinov M, Karastoyanov V, Kinnunen P, et al. Corrosion Science, 2010, 52(1), 54.
16 Jiang G, Liu L, Xu D, et al. The Journal of Supercritical Fluids, 2023, 193, 105828.
17 Krausová A, Macák J, Sajdl P, et al. Journal of Nuclear Materials, 2015, 467, 302.
18 Renčiuková V, Macák J, Sajdl P, et al. Journal of Nuclear Materials, 2018, 510, 312.
19 Stoll U, Slavinskaya N. Journal of Nuclear Science and Technology, 2023, 60(5), 573.
20 Yun G C, Cheng X Z. Water chemistry in pressurized water reactor, Harbin Engineering University Press, China, 2009, pp. 199 (in Chinese).
云桂春, 成徐州. 压水反应堆水化学, 哈尔滨工程大学出版社, 2009, pp. 199.
21 Xue C, Zhang Z, Tan J, et al. Corrosion Science, 2023, 211, 110909.
22 Oskarsson M, Ahlberg E, Pettersson K. Journal of Nuclear Materials, 2001, 295(1), 97.
23 Müller S, Lanzani L. Journal of Nuclear Materials, 2013, 439(1-3), 251.
24 Waheed A A F, Kandil A H, Khawassek Y M, et al. Journal of Nuclear Materials, 2017, 495, 27.
25 Müller S, Lanzani L. Procedia Materials Science, 2015, 8, 46.
26 Waheed A A F, Kandil A H T, Hamed H M. Annals of Nuclear Energy, 2016, 94, 168.
27 Kandil A H, Waheed A A F, Tawfik H M T. International Journal of Advanced Research, 2014, 2, 149.
28 Waheed A F, Kamel A N, Hamed H M. International Journal of Advanced Scientific and Technical Research, 2018, 8, 1.
29 Liu W Q, Zhou B X, Li Q. Nuclear Power Engineering, 2003, 24(3), 5(in Chinese).
刘文庆, 周邦新, 李强. 核动力工程, 2003, 24(3), 5.
30 Stephens G F, Owen M W, Ghardi E M, et al. Journal of Nuclear Materials, 2024, 588, 154780.
31 Stephens G F, Than Y R, Neilson W, et al. Solid State Ionics, 2021, 373, 115813.
32 Wei K, Wang X, Zhu M, et al. Corrosion Science, 2021, 181, 109216.
33 Zhou B X, Li Q, Liu W Q, et al. Rare Metal Materials and Engineering, 2006(7), 1009 (in Chinese).
周邦新, 李强, 刘文庆, 等. 稀有金属材料与工程, 2006(7), 1009.
34 Yao M Y, Gao C Y, Huang J, et al. Corrosion Science, 2015, 100, 169.
35 Liu J, He G, Callow A, et al. Acta Materialia, 2021, 215, 117042.
36 Bell B D C, Murphy S T, Grimes R W, et al. Acta Materialia, 2017, 132, 425.
37 Yao M Y, Zhou B X. Journal of Shanghai University (Natural Science Edition), 2020, 26(5), 681 (in Chinese).
姚美意, 周邦新. 上海大学学报(自然科学版), 2020, 26(5), 681.
38 Kiran Kumar M, Aggarwal S, Kain V, et al. Nuclear Engineering and Design, 2010, 240(5), 985.
39 Lai P, Lu J, Zhang H, et al. Journal of Nuclear Materials, 2020, 532, 152079.
40 Shibata A, Kato Y, Taguchi T, et al. Nuclear Technology, 2016, 196(1), 89.
41 Kim T, Choi K J, Yoo S C, et al. Corrosion Science, 2018, 131, 235.
42 Kim T, Kim S, Lee Y, et al. Corrosion Science, 2019, 157, 180.
43 Kim T, Couet A, Kim S, et al. Corrosion Science, 2020, 173, 108745.
44 Bojinov M, Cai W, Kinnunen P, et al. Journal of nuclear materials, 2008, 378(1), 45.
45 Kharitonova N L, Tyapkov V F. Thermal Engineering, 2018, 65(11), 846.
46 Wu X, Liu X, Zhang Z, et al. Corrosion Communications, 2022, 6, 52.
[1] 秦传广, 姜博, 刘乃志, 王晔, 胡茂良, 许红雨, 吉泽升, 尚金翅. Al7Si0.5Mg合金喷丸处理微观组织形貌及腐蚀行为研究[J]. 材料导报, 2025, 39(9): 24030204-7.
[2] 赵帅, 文绍牧, 廖柯熹, 秦林, 林冬, 高健. 无损检测技术在高含硫天然气管道中的应用研究进展[J]. 材料导报, 2025, 39(9): 24030169-9.
[3] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[4] 袁均相, 刘国建, 刘志勇, 佘伟, 张云升. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J]. 材料导报, 2025, 39(8): 24030019-7.
[5] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[6] 邹晓惠, 刘永飞, 李丹, 姚海元, 董磊磊, 徐云泽. 马氏体钢和高锰钢在人工海水中的冲刷腐蚀行为研究[J]. 材料导报, 2025, 39(8): 24030170-8.
[7] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[8] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[9] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[10] 叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
[11] 汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
[12] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[13] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[14] 林家茂, 姚美意, 陈哲斌, 徐诗彤, 胡丽娟. 生物医用锆基合金的研究进展[J]. 材料导报, 2025, 39(5): 24020141-10.
[15] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed