Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24030170-8    https://doi.org/10.11896/cldb.24030170
  金属与金属基复合材料 |
马氏体钢和高锰钢在人工海水中的冲刷腐蚀行为研究
邹晓惠1, 刘永飞2, 李丹2, 姚海元2, 董磊磊1, 徐云泽1,3,*
1 大连理工大学船舶工程学院,辽宁 大连 116024
2 中海油研究总院有限责任公司,北京 100028
3 大连理工大学工业装备结构分析、优化与CAE软件国家重点实验室,辽宁 大连 116024
Study on the Erosion-Corrosion Behavior of Martensitic Steel and High Manganese Steel in Artificial Seawater
ZOU Xiaohui1, LIU Yongfei2, LI Dan2, YAO Haiyuan2, DONG Leilei1, XU Yunze1,3,*
1 School of Naval Architecture, Dalian University of Technology, Dalian 116024, Liaoning, China
2 CNOOC Research Institute Co., Ltd., Beijing 100028, China
3 State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 41255KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用旋转搅拌装置,研究了两种高强钢(马氏体钢和高锰钢)在人工海水中的纯腐蚀、纯磨损和冲刷腐蚀行为,并结合电化学、失重测量和形貌表征,对两种高强钢在人工海水中局部腐蚀与磨损耦合作用机制进行了分析。实验结果表明,在纯流体下,高锰钢的腐蚀速率远低于马氏体钢,具有更好的耐蚀性。加入沙砾后,高锰钢的腐蚀形貌与纯流体中相似,均呈现点蚀坑,而马氏体钢的腐蚀形貌从“flow mark”转变为点蚀坑。在低流速下,沙砾的冲击作用较弱,两种钢的冲刷腐蚀仍以腐蚀作用为主,同时腐蚀与磨损的耦合作用非常显著,由耦合作用造成的损失是两种钢冲刷腐蚀损失的主要原因。电化学和失重测量结果显示,高锰钢的冲刷腐蚀速率要远低于马氏体钢,但是局部形貌表征结果显示高锰钢的点蚀坑深度要高于马氏体钢,面临更高的穿孔风险。此外,高锰钢点蚀坑内部的裂纹发展也可能会诱发其他类型的损伤。因此,在研究冲刷腐蚀过程中,局部冲刷腐蚀信息也应该被重点关注。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹晓惠
刘永飞
李丹
姚海元
董磊磊
徐云泽
关键词:  马氏体钢  高锰钢  人工海水  冲刷腐蚀  耦合作用    
Abstract: In this work, the corrosion, erosion and erosion-corrosion behaviors of two high-strength steels (martensitic steel and high manganese steel) in artificial seawater were studied by using a rotary stirring setup, and the coupling mechanism of local corrosion and erosion of two high-strength steels in artificial seawater was analyzed by combining electrochemistry, weight loss measurement and morphological characterization. The test results show that under pure fluid, high manganese steel has better corrosion-resistance, and its corrosion rate is much lower than that of martensitic steel. After the addition of sand, the corrosion morphology of high manganese steel is similar to that in pure fluids, and all of them are pitting damage, while the corrosion morphology of martensitic changes from “flow mark” to pitting damage. At a low flow rate, the impact of sand is weak, and the corrosion of the two steels is dominant in its erosion-corrosion, and the synergistic effect of corrosion and erosion is very significant, and the loss caused by the synergistic effect is the main reason for the erosion-corrosion loss of the two steels. The electrochemical and weight loss measurements show that the erosion-corrosion rate of high-manganese steel is much lower than that of martensitic steel, but the local morphology characterization results show that the pit depth of high-manganese steel is higher than that of martensitic steel, and it faces a higher risk of perforation. Furthermore, crack development inside the pit may also induce other types of damage. Therefore, in the process of studying erosion-corrosion, we should also pay attention to the local erosion-corrosion.
Key words:  martensitic steel    high manganese steel    artificial seawater    erosion-corrosion    synergy
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TG178  
基金资助: 国家重点研发计划(2022YFC2806200)
通讯作者:  徐云泽,博士,大连理工大学船舶工程学院副教授,工业装备结构分析国家重点实验室固定成员。主要从事船舶与海洋结构物腐蚀损伤机理与监测技术研究。xuyunze123@163.com   
作者简介:  邹晓惠,大连理工大学船舶工程学院硕士研究生,师从黄一教授、徐云泽副教授。目前主要研究领域为海洋疏浚工程用钢冲刷腐蚀损伤机理与监测技术。
引用本文:    
邹晓惠, 刘永飞, 李丹, 姚海元, 董磊磊, 徐云泽. 马氏体钢和高锰钢在人工海水中的冲刷腐蚀行为研究[J]. 材料导报, 2025, 39(8): 24030170-8.
ZOU Xiaohui, LIU Yongfei, LI Dan, YAO Haiyuan, DONG Leilei, XU Yunze. Study on the Erosion-Corrosion Behavior of Martensitic Steel and High Manganese Steel in Artificial Seawater. Materials Reports, 2025, 39(8): 24030170-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030170  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24030170
1 Zhao J. Materials Reports, 2018, 32(S1), 428(in Chinese).
赵捷. 材料导报, 2018, 32(S1), 428.
2 Fang H, Liu H, Sun J, et al. Materials Reports, 2023, 37(21), 211(in Chinese).
房洪杰, 刘慧, 孙杰, 等. 材料导报, 2023, 37(21), 211.
3 Teng Y, Zhang H, Ma L, et al. Equipment Environmental Engineering, 2023, 20(8), 53(in Chinese).
滕乙正, 张海兵, 马力, 等. 装备环境工程, 2023, 20(8), 53.
4 Song F, Du L. Journal of Iron and Steel Research, 2014, 26(2), 1(in Chinese).
宋凤明, 杜林秀. 钢铁研究学报, 2014, 26(2), 1.
5 Ren Y, Zhao H, Zhou H, et al. Journal of Chinese Society for Corrosion and Protect, 2021, 41(4), 508(in Chinese).
任莹, 赵会军, 周昊, 等. 中国腐蚀与防护学报, 2021, 41(4), 508.
6 Zhu J, Zhang Q, Chen Y, et al. Journal of Chinese Society for Corrosion and Protect, 2014, 34(3), 199(in Chinese).
朱娟, 张乔斌, 陈宇, 等. 中国腐蚀与防护学报, 2014, 34(3), 199.
7 Yang X, Guan L, Li Y, et al. Journal of Chinese Society for Corrosion and Protect, 2022, 42(6), 979(in Chinese).
杨湘愚, 关蕾, 李雨, 等. 中国腐蚀与防护学报, 2022, 42(6), 979.
8 Peng W, Zhao J, Sun J, et al. Equipment Environmental Engineering, 2021, 18(9), 64(in Chinese).
彭文山, 赵建仓, 孙佳钰, 等. 装备环境工程, 2021, 18(9), 64.
9 Liu X, Peng W, Liu S, et al. Equipment Environmental Engineering, 2019, 16(3), 9(in Chinese).
刘雪键, 彭文山, 刘少通, 等. 装备环境工程, 2019, 16(3), 9.
10 Gao Q, Zeng W, Wang H, et al. Journal of Chinese Society for Corrosion and Protection, 2023, 43(5), 1087(in Chinese).
高秋英, 曾文广, 王恒, 等. 中国腐蚀与防护学报, 2023, 43(5), 1087.
11 Song F, Du L, Sun G, et al. Corrosion Science and Protection Technology. 2018, 30(1), 74(in Chinese).
宋凤明, 杜林秀, 孙国胜, 等. 腐蚀科学与防护技术, 2018, 30(1), 74.
12 Islam M, Jiang J, Xie Y. Wear, 2024, 536-537, 205181.
13 Ren W, Ma H, Cui S, et al. Heat Treatment of Metals, 2 024, 49(1), 61(in Chinese).
任武彬, 麻衡, 崔绍华, 等. 金属热处理, 2024, 49(1), 61.
14 Chung R, Jiang J, Pang C, et al. Wear, 2023, 530, 204885.
15 Park J, Lee S, Choi J, et al. Applied Surface Science, 2023, 637, 157875.
16 Park J, Kim S, Jeong Y, et al. Materials, 2022, 15(5), 1746
17 Zhang Q, Wang Y, Li G, et al. Acta Metallurgica Sinica, 2023, 59(7), 893(in Chinese).
张奇亮, 王玉超, 李光达, et al. 金属学报, 2023, 59(7), 893.
18 Xu Y, Zhang Q, Chen H, et al. Journal of Materials Research and Technology, 2022, 20, 4432.
19 Xu Y, Zhang Q, Zhou Q, et al. npj Materials Degradation, 2021, 5(1), 56.
20 Xu Y, Tan M. Corrosion Science, 2019, 151, 163.
21 Khireche S, Boughrare D, Kadri A, et al. Corrosion Science, 2014, 87, 504.
22 Xu Y, Tan M. Corrosion Science, 2018, 139, 438.
23 Xu Y, Zhang Q, Chen H, et al. Journal of Materials Research and Technology, 2023, 25, 6550.
24 Zhang F, Chen C, Liu S, et al. Steel, 2024, 59(3), 1(in Chinese).
张福成, 陈晨, 刘帅, 等. 钢铁, 2024, 59(3), 1.
26 Owen J, Ramsey C, Barker R, et al. Wear, 2018, 414-415, 376.
25 Xu Y, Zhang Q, Gao S, et al. Wear, 2021, 478-479, 203907.
27 Evans U R. Journal of the Electrochemical Society, 1961, 108(4), 94C.
28 Wang L, Xin J, Cheng L, et al. Corrosion Science, 2019, 147, 108.
[1] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[2] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[3] 郭晓宇, 温晓晶, 孟庆领, 王海良, 彭全敏, 张龙明. 腐蚀-荷载耦合作用下耐候桥梁钢及其焊接节点性能劣化研究进展[J]. 材料导报, 2023, 37(11): 22070019-8.
[4] 邵亚丽, 王喜明. 木材形状记忆效应与机理的研究进展[J]. 材料导报, 2021, 35(7): 7190-7198.
[5] 林震霞, 党莹, 徐祺, 李丹. 690合金在核电厂一、二回路工况下的均匀腐蚀性能研究[J]. 材料导报, 2020, 34(Z2): 437-440.
[6] 贾卫平, 吴蒙华, 贾振元, 董桂馥, 李晓鹏, 周绍安. 超声功率对多场耦合作用下脉冲电沉积Ni-ZrO2纳米复合镀层性能的影响[J]. 材料导报, 2020, 34(2): 2017-2022.
[7] 牛犇, 王镇华, 潘钱付, 刘超红, 王清, 董闯. 核电用铁素体/马氏体耐热钢的性能与成分研究进展[J]. 材料导报, 2020, 34(19): 19141-19151.
[8] 李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
[9] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[10] 程 波,向真才,郭 恒,熊云威. 煤岩材料对瓦斯吸附性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1513-1518.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed