Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24030158-7    https://doi.org/10.11896/cldb.24030158
  金属与金属基复合材料 |
基于机器学习的快淬NdFeB磁体永磁性能分析与预测
温晋太1, 胡怀谷2, 安江山1, 韩婷1, 李欣俞1, 胡季帆1,3,*
1 太原科技大学材料科学与工程学院,太原 030024
2 郑州轻工业大学机电工程学院,郑州 450002
3 山东大学物理学院,济南 250100
Machine Learning-based Analysis and Prediction of Hard Magnetic Performance for Melt-spun NdFeB Magnets
WEN Jintai1, HU Huaigu2, AN Jiangshan1, HAN Ting1, LI Xinyu1, HU Jifan1,3,*
1 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2 College of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
3 School of Physics, Shandong University, Jinan 250100, China
下载:  全 文 ( PDF ) ( 6017KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 NdFeB磁体的永磁性能受合金成分以及工艺参数影响大,机器学习基于数学和信息科学方法,使用现有快淬NdFeB磁体数据来预测NdFeB磁体的磁性能。在本工作中,利用eXtreme Gradient Boosting(XGBoost)算法对快淬NdFeB磁体永磁性能进行分析。结果表明,相较于其他机器学习模型,利用集成学习XGBoost算法开发出的机器学习模型对快淬NdFeB磁体永磁性能的预测结果精度更高,稳定性更好。同时还利用该XGBoost模型,优化预测出新的具有较高永磁性能的快淬NdFeB材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温晋太
胡怀谷
安江山
韩婷
李欣俞
胡季帆
关键词:  钕铁硼  磁性能  合金成分  工艺参数  极端梯度提升    
Abstract: The permanent magnetic performance of NdFeB magnets strongly depends on the alloy composition and process parameters. Machine lear-ning is based on mathematical and information science methods, using existing rapidly quenched NdFeB magnet data to predict the magnetic properties of NdFeB magnets. In this work, the eXtreme Gradient Boosting (XGBoost) algorithm was used to analyze the permanent magnet performance of rapidly quenched NdFeB magnets. The results show that the machine learning model developed from ensemble learning XGBoost algorithm has a higher prediction accuracy and better stability for the permanent magnet performance of rapidly quenched NdFeB magnets than other algorithms. Then the machine model based on XGBoost algorithm proposed here is utilized to optimize and predict new melt-spun NdFeB mate-rials with high permanent magnetic performance.
Key words:  NdFeB    magnetic property    alloy composition    process parameter    XGBoost
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TM273  
基金资助: 山西省科技重大专项(202101050201006);山西省重点研发计划(202202050201020)
通讯作者:  胡季帆,太原科技大学材料学院教授、博士研究生导师,太原科技大学磁性材料与新技术研究院院长。主要从事功能材料研究,包括材料磁学与磁电子学、稀土永磁材料、储氢材料、气敏传感器等材料的研发。hujifan@tyust.edu.cn   
作者简介:  温晋太,太原科技大学材料科学与工程学院硕士研究生,在胡季帆教授的指导下进行研究。目前主要研究领域为稀土永磁。
引用本文:    
温晋太, 胡怀谷, 安江山, 韩婷, 李欣俞, 胡季帆. 基于机器学习的快淬NdFeB磁体永磁性能分析与预测[J]. 材料导报, 2025, 39(8): 24030158-7.
WEN Jintai, HU Huaigu, AN Jiangshan, HAN Ting, LI Xinyu, HU Jifan. Machine Learning-based Analysis and Prediction of Hard Magnetic Performance for Melt-spun NdFeB Magnets. Materials Reports, 2025, 39(8): 24030158-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030158  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24030158
1 Sagawa M, Fujimura S, Togawa N, et al. Journal of Applied Physics, 1984, 55(6), 2083.
2 Croat J J, Herbst J F, Lee R W, et al. Journal of Applied Physics, 1984, 55(6), 2078.
3 Brown D, Ma B M, Chen Z. Journal of Magnetism and Magnetic Materials, 2002, 248(3), 432.
4 Davies B E, Mottram R S, Harris I R. Materials Chemistry and Physics, 2001, 67(1-3), 272.
5 Ma B M, Herchenroeder J W, Smith B, et al. Journal of Magnetism and Magnetic Materials, 2002, 239(1-3), 418.
6 Honshima M, Ohashi K. Journal of Materials Engineering and Performance, 1994, 3, 218.
7 Deng R L, Liang D N, Huang G K, et al. China Equipment Engineering, 2021(12), 242 (in Chinese).
邓汝彬, 梁德宁, 黄国康, 等. 中国设备工程, 2021(12), 242.
8 Zhang Y, Xu X. Computational Materials Science, 2020, 179, 109583.
9 Zhang Y, Xu X. Physica C: Superconductivity and Its Applications, 2020, 573, 1353633.
10 Zhang Y, Xu X. Journal of Magnetism and Magnetic Materials, 2020, 512, 166998.
11 Agrawal A, Deshpande P D, Cecen A, et al. Integrating Materials and Manufacturing Innovation, 2014, 3, 90.
12 Karak S K, Chatterjee S, Bandopadhyay S. Powder Technology, 2015, 274, 217.
13 Pilania G, Mannodi-Kanakkithodi A, Uberuaga B P, et al. Scientific Reports, 2016, 6(1), 19375.
14 Jinnouchi R, Asahi R. The Journal of Physical Chemistry Letters, 2017, 8(17), 4279.
15 Zhou T, Jhamb S, Liang X, et al. Chemical Engineering Science, 2018, 183, 95.
16 Aghaji M Z, Fernandez M, Boyd P G, et al. European Journal of Inorganic Chemistry, 2016, 2016(27), 4505.
17 Sharma V, Wang C, Lorenzini R G, et al. Nature Communications, 2014, 5(1), 4845.
18 Madaan N, Shiju N R, Rothenberg G. Catalysis Science & Technology, 2016, 6(1), 125.
19 Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel T D, et al. Nature Materials, 2016, 15(10), 1120.
20 Stanev V, Oses C, Kusne A G, et al. npj Computational Materials, 2018, 4(1), 29.
21 Olivares-Amaya R, Amador-Bedolla C, Hachmann J, et al. Energy & Environmental Science, 2011, 4(12), 4849.
22 Hou T Y, Sun Y H, Sun S P, et al. Materials Reports, 2022, 36(6), 165(in Chinese).
侯腾跃, 孙炎辉, 孙舒鹏, 等. 材料导报, 2022, 36(6), 165.
23 Stern S, Hexner D, Rocks J W, et al. Physical Review X, 2021, 11(2), 021045.
24 Wickramasinghe C S, Amarasinghe K, Marino D L, et al. IEEE Access, 2021, 9, 131824.
25 Sutton R S, Barto A G. Reinforcement learning: an introduction, MIT Press, USA, 2018.
26 Mobarak M H, Mimona M A, Islam M A, et al. Applied Surface Science Advances, 2023, 18, 100523.
27 Chu L H, Zha W S, Liu J Y, et al. Chinese Rare Earths, 2009, 30(2), 39(in Chinese).
储林华, 查五生, 刘锦云, 等. 稀土, 2009, 30(2), 39.
28 Lian L X, Liu Y, Song D. Journal of Functional Materials, 2005, 36(8), 1178.
29 Vapnik V. New York, 1995, 10, 978.
30 Cheng W D. Journal of Magnetic Materialsr Devices, 2015, 46(3), 17(in Chinese).
程文德. 磁性材料及器件, 2015, 46(3), 17.
31 Zhou S H, Zha W S, Wang X Z. Chinese Rare Earths, 2012, 33(1), 61(in Chinese).
周胜海, 查五生, 王向中. 稀土, 2012, 33(1), 61.
32 Zhang Y, Xu X. Journal of Superconductivity and Novel Magnetism, 2021, 34(11), 2711.
33 Qiao Z, Dong S Z, Li Q, et al. Journal of Alloys and Compounds, 2023, 963.
34 Hearst M A, Dumais S T, Osuna E, et al. IEEE Intelligent Systems and Their Applications, 1998, 13(4), 18.
35 Trevor E. Canadian Journal of Mathematics, 1963, 15, 584.
36 Friedman H J. The Annals of Statistics, 2001, 29(5), 1189.
37 Chen T, Guestrin C. In: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco, USA, 2016, pp. 785.
38 Lai B, Li Y F, Wang H J, et al. Journal of Rare Earths, 2014, 32(6), 514.
39 Tian Z, Li S, Peng K, et al. Materials Science and Engineering: A, 2004, 380(1-2), 143.
40 Sun W, Li S, Quan M. Journal of Magnetism and Magnetic Materials, 1997, 176(2-3), 307.
41 Chang W C, Wu S H, Ma B M, et al. Journal of Magnetism and Magnetic Materials, 1997, 167(1-2), 65.
42 Harland C L, Davies H A. Journal of Alloys and Compounds, 1998, 281(1), 37.
43 Caglar S, Kilicaslan M F, Atasoy A, et al. Journal of Materials Science: Materials in Electronics, 2021, 32, 2338.
44 Gholamipour R, Beitollahi A, Marghusian V K, et al. Metallurgical and Materials Transactions A, 2006, 37, 1581.
45 Zhou W, Chang C, Inoue A, et al. Journal of Applied Physics, 2015, 117(12), 123905.
46 Liu A Z, Rahman I Z, Rahman M A, et al. Journal of Materials Processing Technology, 1996, 56(1-4), 571.
47 Cheng Z H, Kronmüller H, Shen B G. Applied Physics Letters, 1998, 73, 1586.
48 Chang W C, Hsing D M. Journal of Applied Physics, 1996, 79(8), 4843.
49 Marashi S P H, Abedi A, Kaviani S, et al. Journal of Physics D: Applied Physics, 2009, 42(11), 115410.
50 Malakouti S M, Menhaj M B, Suratgar A A. Cleaner Engineering and Technology, 2023, 15, 100664.
51 Xi B W, Xiong G, Kozin K A, et al. Results in Control and Optimization, 2023, 13, 100320.
52 Zhang X, Liu C A. Journal of Econometrics, 2023, 235(1), 280.
53 Chen H, Lundberg S, Lee S I. Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability, 2021, pp. 261.
54 Shapley L. A value for n-person games. contributions to the theory of games Ⅱ (1953)307-317, Princeton University Press, USA, 1997, pp.69.
[1] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[2] 王聪, 杨富尧, 刘洋, 韩钰, 高洁, 孙浩, 刘成宇. 快淬速度和Ce浓度对贫稀土Ce-Fe-B合金相组成及磁性能的影响[J]. 材料导报, 2025, 39(7): 24010030-5.
[3] 田广科, 陆中砥, 柴培钊, 王瑜, 许亿, 夏原. 重稀土晶界扩散工艺制备高矫顽力钕铁硼磁体研究进展与应用现状[J]. 材料导报, 2025, 39(6): 24040174-6.
[4] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[5] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[6] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[7] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[8] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[9] 鲁飞, 刘树峰, 李慧, 张帅, 赵娜娜, 李飞, 尹高天. 稀土合金扩散烧结钕铁硼磁体研究进展[J]. 材料导报, 2024, 38(16): 23020178-8.
[10] 傅邦杰, 彭文飞, 林龙飞, 李贺, 邵熠羽, 朱盛明. 差温轧制6063/7072铝合金复合板有限元模拟及翘曲影响因素[J]. 材料导报, 2024, 38(15): 23100223-8.
[11] 何承绪, 马光, 毛航银, 祝志祥, 韩钰, 高洁, 张一航, 胡卓超. 耐热型取向硅钢涂层特性与磁性能[J]. 材料导报, 2024, 38(1): 22030301-5.
[12] 蔡锦文, 冯可芹, 王海波, 刘艳芳, 陈思潭. 表面修饰石墨烯制备工艺及其在金属材料中的应用研究[J]. 材料导报, 2024, 38(1): 22060277-6.
[13] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[14] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[15] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed