Please wait a minute...
材料导报  2025, Vol. 39 Issue (8): 24030019-7    https://doi.org/10.11896/cldb.24030019
  金属与金属基复合材料 |
合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理
袁均相1, 刘国建1,*, 刘志勇2, 佘伟2, 张云升2,3
1 苏州科技大学土木工程学院,江苏 苏州 215011
2 东南大学材料科学与工程学院,南京 211189
3 兰州理工大学土木工程学院,兰州 730050
Corrosion Behavior and Mechanism of Alloy Steel Submitted to Chloride and Sulfate
YUAN Junxiang1, LIU Guojian1,*, LIU Zhiyong2, SHE Wei2, ZHANG Yunsheng2,3
1 School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
3 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 7549KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过腐蚀电位、线性极化电阻、腐蚀电流密度和电化学阻抗谱分析,研究了氯盐与硫酸盐作用下预钝化合金钢在饱和Ca(OH)2混凝土模拟孔溶液中的腐蚀演变,利用Fe-Cr-H2O合金系统Pourbaix图分析,探讨了两种离子在腐蚀过程中的作用机理。研究结果表明:氯离子单独存在的情况下,合金钢腐蚀速率最高,硫酸根离子单独存在时腐蚀速率最低;而氯离子和硫酸根离子共存情况下,电化学测试结果均介于两者单独存在的结果之间。根据理论分析,提出了合金钢腐蚀过程中氯盐和硫酸盐竞争吸附-催化腐蚀两阶段反应机理模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁均相
刘国建
刘志勇
佘伟
张云升
关键词:  合金钢  腐蚀  复合侵蚀离子  氯盐  硫酸盐    
Abstract: The corrosion behavior of pre-passivated alloy steel in a saturated Ca(OH)2 simulated concrete pore solution was analyzed under the action of chlorides and sulfates through corrosion potential, linear polarization resistance, corrosion current density, and electrochemical impedance spectroscopy. By leveraging the Pourbaix diagram of the Fe-Cr-H2O alloy system, the action mechanisms of two ions in the corrosion process was investigated. Results showed that the corrosion rate of steel was the highest with chlorides only, and the lowest with sulfates only, and intermediate with both ions. Finally, based on theoretical analysis, a reaction mechanism model of the competitive adsorption and catalysis of corrosion by chlorides and sulfates in lalloy steel corrosion was proposed.
Key words:  alloy steel    corrosion    composite corrosive ions    chloride    sulfate
出版日期:  2025-04-25      发布日期:  2025-04-18
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52008284)
通讯作者:  刘国建,苏州科技大学土木工程学院副教授、硕士研究生导师。主要研究方向为严酷环境下钢筋腐蚀行为与机理、结构混凝土耐久性、水泥基材料微结构表征等。liuguojian@usts.edu.cn   
作者简介:  袁均相,现为苏州科技大学土木工程学院硕士研究生,在刘国建副教授指导下进行研究。主要从事钢筋锈蚀、严酷环境下混凝土耐久性研究。
引用本文:    
袁均相, 刘国建, 刘志勇, 佘伟, 张云升. 合金钢在氯盐与硫酸盐作用下的腐蚀行为与机理[J]. 材料导报, 2025, 39(8): 24030019-7.
YUAN Junxiang, LIU Guojian, LIU Zhiyong, SHE Wei, ZHANG Yunsheng. Corrosion Behavior and Mechanism of Alloy Steel Submitted to Chloride and Sulfate. Materials Reports, 2025, 39(8): 24030019-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030019  或          https://www.mater-rep.com/CN/Y2025/V39/I8/24030019
1 Huang W, Chen Z D, Chen R, et al. Journal of the Chinese Ceramic Society, 2023, 51(8), 1928 (in Chinese).
黄伟, 陈镇东, 陈荣, 等. 硅酸盐学报, 2023, 51(8), 1928.
2 Ming J, Shi J J, Sun W. Journal of Building Materials, 2020, 23(2), 347 (in Chinese).
明静, 施锦杰, 孙伟. 建筑材料学报, 2020, 23(2), 347.
3 Jin Z Q, Sun W, Zhang Y S, et al. Journal of the Chinese Ceramic Society, 2006, (5), 630 (in Chinese).
金祖权, 孙伟, 张云升, 等. 硅酸盐学报, 2006, (5), 630.
4 Ma Y L, Zhang A L. Chinese Journal of Civil Engineering, 2006, (2), 36.
马亚丽, 张爱林. 土木工程学报, 2006, (2), 36.
5 Liu G J, Zhang Y S, Huang R. Construction and Building Materials, 2016, 115, 1.
6 Li C, Fan Y F, Wang Y Y, et al. Journal of the Chinese Ceramic Society, 2021, 49(8), 1642 (in Chinese).
李闯, 范颖芳, 王耀宇, 等. 硅酸盐学报, 2021, 49(8), 1642.
7 Sahoo G, Balasubramaniam R, Misra S. Corrosion, 2007, 63(10), 975.
8 Shen F M, Liu G J, Liu C, et al. Journal of Materials Research and Technology, 2024, 29, 1305.
9 Hussain R R, Alhozaimy A, Singh D D N. Construction and Building Materials, 2014, 73, 283.
10 Liu G J, Zhang Y S, Liu C, et al, Material Reports, 2021, 35(14), 14072 (in Chinese).
刘国建, 张云升, 刘诚, 等. 材料导报, 2021, 35(14), 14072.
11 Chen C, Ma H, Cai J, et al. Materials Research Innovations, 2014, 18, 285.
12 Ming J, Shi J J. International Journal of Minerals Metallurgy and Materials. 2012, 27(4), 494.
13 Wu M, Ma H F, Shi J J. Cement & Concrete Composites, 2021, 116, 103887.
14 Zhang Z Y. International Journal of Electrochemical Science, 2020, 15(10), 9864.
15 Liu G J, Zhu H, Zhang Y S, et al. Journal of the Chinese Ceramic Society, 2022, 50(2), 413 (in Chinese).
刘国建, 朱航, 张云升, 等. 硅酸盐学报, 2022, 50(2), 413.
16 Sahoo G, Balasubramaniam R. Corrosion Science, 2008, 50(1), 131.
17 Liu G J, Shen F M, Zhang Y S, et al. Construction and Building Materials, 2024, 411, 134250.
18 Liu G J, Zhang Y S, Huang R. Construction and Building Materials, 2017, 157, 357.
19 Su H Y, Wei S C, Liang Y, et al. Journal of Electroanalytical Chemistry, 2020, 863, 114056.
20 Shi J J, Sun W, Jiang J Y, et al. Construction and Building Materials, 2016, 111, 805.
21 Zhao Q X, Li D H, Yan G L, et al, Journal of the Chinese Ceramic Society, 2012, 40(2), 217 (in Chinese).
赵庆新, 李东华, 闫国亮, 等. 硅酸盐学报, 2012, 40(2), 217.
22 Wang P G, Mo R, Sui X M, et al. Journal of the Chinese Ceramic Society, 2022, 50(2), 512 (in Chinese).
王鹏刚, 莫芮, 隋晓萌, 等. 硅酸盐学报, 2022, 50(2), 512.
23 Zuo X B, Qiu L F, Tang Y J, et al. Journal of Building Materials, 2017, 20(3), 352 (in Chinese).
左晓宝, 邱林峰, 汤玉娟, 等. 建筑材料学报, 2017, 20(3), 352.
24 Tyurin A G. Protection of metals, 1999, 35(3), 215.
25 Mehta P K. Monteiro P J M. Concrete microstructure, properties, materials, 4th ed. The McGraw-Hill Companies Inc, New York, 2014, pp. 48.
26 Ye C Q, Hu R G, Pan J S. Journal of Electroanalytical Chemistry, 2013, 688, 275.
27 Freire L, Carmezim M J, Montemor M F. Electrochimica Acta, 2010, 55(21), 6174.
28 Tang F, Cheng X, Koenigstein M L. Journal of the Electrochemical Society, 2013, 92, 36.
29 Hu J, Koleva D A, De Wit J H W. Journal of the Electrochemical Society, 2011, 158(3), C76.
30 Zhao Y, Xie J F, Zeng G X, et al. Electrochimica Acta, 2019, 293, 116.
31 Kriksunov L B, Macdonald D D. Corrosion Science, 1997, 43(8), 605.
32 Muñoz-Portero M J, GarcÍA-AntÓ N J, GuiñÓN J L, et al. Corrosion Science, 2005, 61(5), 464.
33 Cao C N. Principles of electrochemistry of corrosion, Chemical Industry Press, China, 2008, pp, 6 (in Chinese).
曹楚南. 腐蚀电化学原理, 化学工业出版社, 2008, pp. 6.
34 Ai Z Y, Sun W, Jiang J Y, et al. materials, 2016, 9(9), 749.
35 Freire L, Catarino M A, Godinho M I, et al. Cement & Concrete Composites, 2012, 34, 1075.
36 Liu L P, Li S L, Gao Z M, et al. International Journal of Electrochemical Science, 2022, 17, 220648.
37 Shi J J, Zou Y Q, Ming J, et al. Corrosion Science, 2020, 169, 108610.
[1] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[2] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[3] 邹晓惠, 刘永飞, 李丹, 姚海元, 董磊磊, 徐云泽. 马氏体钢和高锰钢在人工海水中的冲刷腐蚀行为研究[J]. 材料导报, 2025, 39(8): 24030170-8.
[4] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[5] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[6] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[7] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[8] 叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
[9] 汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
[10] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[11] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[12] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[13] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[14] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[15] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed